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ABSTRACT

Low complexity domains (LCDs) in proteins are re-
gions predominantly composed of a small subset of
the possible amino acids. LCDs are involved in a va-
riety of normal and pathological processes across
all domains of life. Existing methods define LCDs
using information-theoretical complexity thresholds,
sequence alignment with repetitive regions, or sta-
tistical overrepresentation of amino acids relative to
whole-proteome frequencies. While these methods
have proven valuable, they are all indirectly quantify-
ing amino acid composition, which is the fundamen-
tal and biologically-relevant feature related to protein
sequence complexity. Here, we present a new com-
putational tool, LCD-Composer, that directly identi-
fies LCDs based on amino acid composition and lin-
ear amino acid dispersion. Using LCD-Composer’s
default parameters, we identified simple LCDs across
all organisms available through UniProt and provide
the resulting data in an accessible form as a re-
source. Furthermore, we describe large-scale differ-
ences between organisms from different domains of
life and explore organisms with extreme LCD con-
tent for different LCD classes. Finally, we illustrate
the versatility and specificity achievable with LCD-
Composer by identifying diverse classes of LCDs us-
ing both simple and multifaceted composition crite-
ria. We demonstrate that the ability to dissect LCDs
based on these multifaceted criteria enhances the
functional mapping and classification of LCDs.

INTRODUCTION

Protein sequence complexity is a measure of the diversity
of amino acids found in a sequence. Proteins lie along a fi-
nite spectrum of sequence complexity constrained by pro-

tein length and the amino acid ‘alphabet’ (generally, the 20
canonical amino acids). While the majority of protein se-
quences are composed of a diverse mixture of the possible
amino acids, a substantial number of proteins contain low-
complexity domains (LCDs) composed of only a small sub-
set of the possible amino acid residues. Proteins with LCDs
participate in a wide array of molecular processes and have
been associated with unique structural, functional and reg-
ulatory tendencies (1–24). Additionally, a variety of human
diseases are associated with mutation or expansion of LCDs
(6,13,25,26).

A variety of methods have been developed to distinguish
LCDs from regions of moderate or high sequence com-
plexity, including SEG (27), CAST (28), fLPS (29) and
others (30–33), and many of these methods were recently
combined in a meta-server for LCD identification (34).
However, these methods rely on mathematical definitions
of sequence complexity or statistical enrichment of amino
acids (relative to whole-proteome frequencies) to distin-
guish LCDs from complex sequences. Although these meth-
ods provide well-defined cutoffs for LCDs, they do not in-
tuitively correspond to biochemical features, making it dif-
ficult for researchers to customize search parameters for de-
sired purposes. Additionally, LCDs can be further decom-
posed into classes based on which specific amino acid(s)
are most common. While the amino acids are often treated
equivalently by sequence complexity methods, the actual
physical properties of the amino acids can be radically dif-
ferent, resulting in LCDs with completely distinct physical
behavior.

For example, although the SEG algorithm has been
used effectively to identify LCDs for biochemical char-
acterization, its original intended purpose was for the
masking of LCDs to improve sequence alignment, and
it is still used in the pervasive BLAST tool (35). Conse-
quently, SEG does not distinguish between LCDs of dif-
ferent classes (e.g. N-rich LCDs versus K-rich LCDs). A
search for protein domains with a given complexity score
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will return a highly heterogeneous mixture of LCDs with
dramatically different compositions (and therefore differ-
ent structural and functional behaviors), requiring addi-
tional downstream sequence analysis to narrow results to
specific LCDs of interest with particular compositional
features.

Likewise, although methods that use statistical overrep-
resentation of specific amino acids have numerous appli-
cations, they face a different set of limitations. Specifi-
cally, while a protein’s amino acid composition is directly
linked to its physical properties, amino acid overrepre-
sentation is only indirectly linked. Although it is possi-
ble in some cases for users to vary the parameters for
statistical overrepresentation methods to identify thresh-
olds that mimic composition-based approaches (though
only for the most basic LCD searches), a method that di-
rectly detects amino acid composition is likely to be sim-
pler and more intuitive for researchers interested in search-
ing for domains that meet specific compositional thresh-
olds. Furthermore, the simplicity of a composition-based
approach enables intuitive, multifaceted searches for LCDs
enriched in multiple amino acids or groups of amino acids
at different composition thresholds, which are not currently
built-in features of existing methods employing statistical
enrichment.

Finally, since protein sequence complexity exists along
a spectrum, a single complexity threshold, though often
useful, may not always be biologically relevant (1). Con-
sequently, different complexity thresholds may be suitable
depending on the types of LCDs of interest and the re-
search question at hand. However, with both approaches,
choosing a threshold for sequence complexity or statis-
tical overrepresentation for a specific LCD search pur-
pose will often require extensive experimentation, optimiza-
tion, or prior calculations, since neither a complexity score
(such as <2.2 bits) or a statistical overrepresentation (such
as P < 10–3) is intuitively linked to a protein’s physical
properties.

Here, we report a new computational tool, the
low-complexity domain composition scanner (LCD-
Composer), which defines LCDs in proteins based on
amino acid composition and linear dispersion of amino
acids. The primary intended purpose of LCD-Composer
is the intuitive identification of LCDs with a focus on the
predominant physicochemical characteristics of the LCDs.
LCD-Composer is a stand-alone Python script (requiring
no external packages, downloads, or configuration) that
runs on all operating systems. The algorithm completes
full-proteome scans in seconds, and runtime scales lin-
early with proteome size, permitting whole-proteome
or multi-proteome analyses. Optional LCD-Composer
parameters are customizable, allowing for both simple
and multifaceted compositional constraints that can be
specified by users. Together, these features make LCD-
Composer intuitive, accessible to researchers with limited
computational experience, and suitable for diverse research
applications. Additionally, we demonstrate the unique
ability of LCD-Composer to rapidly identify both simple
and multifaceted LCDs with high specificity, and to dissect
LCDs into distinct subclasses of functional importance
across an array of model organisms.

MATERIALS AND METHODS

Calculation of amino acid composition and linear amino acid
dispersion

LCD-Composer implements a sliding window approach
(with a 20aa default window size, and a step size = 1) to
evaluate local amino acid composition. For each window,
the amino acid composition, C, is calculated as the sum of
the total occurrences of each amino acid in the specified set
divided by the length of the sequence:

C =
∑

r∈A nr

L

where A represents the set of specified amino acids, nr repre-
sents the number of times residue r occurs in the window se-
quence, and L represents the window size used (or the length
of the sequence being analyzed).

Let B represent the set of the canonical amino acids not
in set A. The linear dispersion of residues in the chosen set
vis-à-vis all other residues and the sequence termini is cal-
culated as the normalized standard deviation of the spacing
of residues in set A and the spacing of residues in set B, with
sequence termini included in the consideration. Specifically,
for a given protein sequence, the differences in numerical
position for all residues in set A from the nearest neighbor
of the same set and from the sequence termini are calcu-
lated. This procedure is repeated for all residues in set B.
The spacing values are then combined into a single array,
and the standard deviation s of the array is calculated as:

s =
√∑(

di − d̄
)2

N

where di represents the difference between the position of
the ith residue and the position of the previous residue from
among the corresponding set (or the sequence terminus) in
the given protein sequence, d̄ represents the mean of the
spacing values, and N represents total number of differences
calculated. For searches with multiple specified groups of
amino acids, residues from all groups are combined into
a single set, and their linear dispersion vis-à-vis all other
residues is calculated. Note that, while this enhances the
sensitivity of detecting LCDs with multi-faceted search cri-
teria by mitigating exclusion of domains on the basis of in-
sufficient dispersion of amino acid(s) with low composition
thresholds, in rare instances this can identify regions with
adjacent LCDs that are not well-mixed.

Since the length and composition of a sequence deter-
mines the range of possible values for the standard deviation
of linear spacings, the standard deviation s is then normal-
ized to the range of possible values:

snorm = 1 −
(

s − smin

smax − smin

)

where smin and smax are standard deviations calculated from
two artificially generated sequences of identical length and
composition designed to minimize and maximize s, respec-
tively. smin is obtained when the specified amino acid is dis-
tributed as uniformly as possible across the sequence win-
dow, which occurs when the absolute difference between
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d̄ and di is <1 for all spacing values; when multiple se-
quences fit these criteria, the sequence was chosen in which
the larger values for di are at the N-terminus. smax is ob-
tained when the specified amino acid is entirely clustered
at one end of the sequence. This method of determining
smin and smax was validated on exhaustive sets of sequences
ranging from 5aa to 30aa in length, and we expect that it
should scale to all window sizes (see Supplementary Mate-
rial). The final linear dispersion snorm is on a scale from 0 to
1, where larger values indicate increased linear dispersion of
the amino acid(s) of interest (i.e. well-mixed sequences). By
default, LCD-Composer ignores the linear dispersion pa-
rameter if the composition of the amino acid(s) of interest
exceeds the midpoint between the user-specified composi-
tion threshold and 100% in order to correct for sequences
of very high composition but containing intervening gaps
between residues of interest resulting in a low linear disper-
sion (see Supplementary Figure S3 in Supplementary Mate-
rial). However, users can also specify a composition value at
which the linear dispersion parameter is ignored using the
‘-i’ flag (e.g. ‘-i 75’ to ignore the linear dispersion parame-
ter for sequences with >75% composition of the amino acid
of interest). Additionally, all regions for which 100% of the
residues are among the amino acids of interest are automat-
ically identified as an LCD regardless of chosen linear dis-
persion parameters.

Merging and trimming of identified domains

After each protein is scored, any overlapping domains that
pass the user-specified amino acid composition and lin-
ear spacing thresholds are merged into a single domain.
All other regions are masked, unless the verbose option
is employed, in which case all regions are scored regard-
less of whether they pass the user-specified thresholds. For
each merged domain, both termini are trimmed until the
amino acid at each terminus matches an amino acid from
the user-defined set of residues. After final processing, the
overall composition (with respect to the user-defined set of
amino acids) and linear dispersion is calculated for each
merged/trimmed domain. In rare cases, merging and trim-
ming of the domain may result in a composition or lin-
ear dispersion that is slightly lower than the user-defined
threshold––this behavior is intentional and allowed since
the identification and merging of underlying windows main-
tains strict adherence to the user-defined composition and
linear dispersion thresholds.

For each protein containing at least one domain of inter-
est, all identified domains, corresponding domain bound-
aries, final domain compositions, and final normalized stan-
dard deviations of linear spacings are written to an output
file. Additionally, if the verbose option is implemented, per-
position compositions and per-position linear dispersion
values (up to the length of the sequence minus the window
size) are included in the results.

Whole-proteome analyses, parameter benchmarking, and
speed tests

For in-depth analyses of specific proteomes, the yeast
proteome (Saccharomyces cerevisiae, UniProt ID

UP000002311) was downloaded from the UniProt website
on 12/25/2019. Proteomes for model eukaryotic organ-
isms [Caenorhabditis elegans (nematode), UP000001940;
Drosophila melanogaster (fruit fly), UP000000803; Danio
rerio (zebrafish), UP000000437; Xenopus laevis (African
clawed frog), UP000186698; Mus musculus (mouse),
UP000000589; and Homo sapiens (human), UP000005640]
were initially downloaded from the UniProt website on
11/19/2020 for proteomes with only one protein sequence
per gene or 2/23/2020 for proteomes containing all known
isoforms. For evaluation of simple LCDs across all or-
ganisms on UniProt, all available proteomes for archaea,
bacteria, and eukaryote were downloaded from the UniProt
FTP server (ftp://ftp.uniprot.org/pub/databases/uniprot/)
on 21 August 2020. All virus proteomes were downloaded
from the same site on 23 August 2020–24 August 2020. Pro-
teomes UP000011843 306025, UP000202407 908070 and
UP000269945 48420 were excluded from further analyses
due to unusually small proteome sizes. Protein sequences
were parsed using the Biopython (version 1.76) FASTA
parsing module (36). All analyses involving speed tests
were run on a simple desktop computer [HP EliteDesk
800 G2, with Intel Core i7-6700 processor (3.40GHz) and
8GB RAM] operating on Windows 10. For parameter
benchmarking, the yeast proteome was analyzed for each
amino acid, window size, linear dispersion threshold, and
minimum composition threshold, with a single parameter
varied each time and the remaining parameters fixed as
the default values (window size = 20aa, linear dispersion
threshold = 0.5, minimum composition threshold = 40%).
For GO term analyses, the gene ontology file was down-
loaded from http://geneontology.org/ on 27 February 2020.
GO annotation files for all organisms were downloaded
from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/ on 27
February 2020. GO enrichment analyses were performed
using the GOATOOLS (version 1.0.2) library, with the
propagate counts option set to ‘False’ to reduce the propor-
tion of broad/non-specific GO terms among statistically
significant results (37).

Statistical estimation of cross-organism GO term counts and
secondary amino acid enrichment within LCDs

Certain GO terms are statistically associated with long pro-
teins, which can increase the type I error rate using stan-
dard GO methodology despite multiple hypothesis test cor-
rection. To account for this, cross-organism GO term en-
richment counts were estimated by length-weighted ran-
dom sampling of proteins from each proteome and evalu-
ation of the number of times the same GO term was ob-
served in multiple organisms. For each LCD class and or-
ganism, proteins were randomly sampled (without replace-
ment, weighted proportionally by protein length) until the
sample size matched that of the observed sample size for
the same LCD class and organism, then evaluated for en-
riched terms by GO analysis. For each GO term identified in
any of the organisms, the number of times it occurred across
the seven organisms was calculated. This procedure was re-
peated 1000 times for every combination of LCD class and
organism, resulting in ∼140k total GO term tests and ∼20k
cross-organism tests. Note that the probability of an LCD
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occurring in a protein may not scale linearly with protein
length when more than one LCD is likely to occur in a pro-
tein of given length: in such cases, our method of estimating
the effect of protein length on type I error rate likely results
in conservative estimates of GO term enrichment counts
(i.e. inflated numbers of enriched GO terms derived from
sampling).

To estimate the number of times identical GO terms
would be sampled in multiple organisms assuming the en-
riched GO term sample size for the LCD-containing protein
sets, GO terms were iteratively sampled for each organism.
Specifically, for each LCD class, GO terms were randomly
selected (without replacement) for each organism from a
complete set of GO terms containing at least one directly
annotated gene product in that organism until the sample
size matched the observed number of enriched GO terms.
The number of times each sampled GO term occurred
across the sampled lists was then calculated and stored. This
procedure was repeated for a total of 100k iterations. Ob-
served cross-organism GO term counts were then statisti-
cally compared to the cross-organism GO term counts de-
rived from iterative sampling using a two-sided Fisher’s ex-
act test, with Bonferroni correction for multiple hypothesis
testing applied within each LCD class (seven possible cross-
organism count categories for each LCD class).

Secondary amino acid enrichment was calculated by first
exhaustively scanning the yeast proteome with a 20aa win-
dow size for each amino acid. For each of the 19 remaining
secondary amino acids, the number of windows for which
that amino acid was either (i) unambiguously the most
abundant, or (ii) the second-most abundant behind only the
primary amino acid, was tallied. The degree of enrichment
or depletion (E) for each LCD subclass (s) was calculated
as:

Es = ln (ORs)

and

ORs =
(

fsobs

1 − fsobs

)/(
fswp

1 − fswp

)

where fsobs represents the fraction of the total observed
primary LCDs assigned to the given LCD subclass (s),
and fswp represents the fraction of windows encountered
during the whole-proteome scan for which the secondary
amino acid was most abundant (again, excluding the pri-
mary amino acid). Subclasses for which the scaled whole-
proteome frequency (i.e. the fraction of windows assigned
to the LCD subclass multiplied by the total observed pri-
mary LCDs) was <1 were excluded from analyses. Sub-
classes for which the scaled whole-proteome frequency ≥1
but with no observed LCDs assigned to that subclass were
assigned an imputed value of 1 for the observed LCD fre-
quency to provide a conservatively biased estimate. P-values
were calculated using a two-sided Fisher’s exact test, with
Bonferroni correction for multiple hypothesis testing.

RESULTS

LCD-Composer: identification and demarcation of LCDs

Compared with sequence complexity or statistical amino
acid bias, amino acid composition more closely reflects the
physicochemical properties of LCDs in proteins. Addition-
ally, a direct readout of amino acid composition is likely
to be more intuitive to cellular and molecular biologists
than a statistical score of complexity or bias. However, one
limitation of using amino acid composition alone to define
LCD boundaries is the occurrence of LCDs which pass the
specified composition criteria (e.g. 50% Q, for Q-rich do-
mains) but exhibit an asymmetric distribution of the amino
acid of interest. For example, Q residues constitute 50% of
the sequence QQQQQPGTRR, but the residues at the C-
terminus are unrelated to the LCD of interest. The spac-
ing of particular amino acids is an important determinant
of biophysical behavior across a variety of LCDs (38–45).
Therefore, we considered a second parameter, the distribu-
tion of the amino acid(s) of interest across the sequence, as
an important feature capable of further resolving LCDs of
similar or identical compositions.

To measure the spacing of amino acids in protein se-
quences, we derived a basic procedure to quantify the nor-
malized standard deviation of the spacing of a specified
amino acid (or set of amino acids) relative to each other and
relative to the termini of a given window sequence (Figure
1; see Material and Methods and Supplementary Material
for detailed descriptions). This statistic, which we refer to
as the ‘linear dispersion’ of amino acids, was tested on an
exhaustive series of benchmark sequences consisting of all
possible 20-residue sequences composed of two representa-
tive amino acids (see Supplementary Figures S1–S3 for ex-
tensive analysis and discussion of the linear dispersion pa-
rameter).

These two parameters––amino acid composition and
linear dispersion of amino acids––were combined into a
single computational approach to identify and demar-
cate LCDs (Figure 2). This method, which we call LCD-
Composer, is available as a stand-alone command-line
script written in Python (https://github.com/RossLabCSU/
LCD-Composer). Briefly, LCD-Composer uses a sliding
window to scan protein sequences. For each subsequence,
the percent composition and linear dispersion correspond-
ing to the amino acid (or group of amino acids) of in-
terest are calculated. Overlapping subsequences that pass
the user-specified composition and linear dispersion crite-
ria are merged into a single domain. Domain termini are
then trimmed until an amino acid of interest is the ultimate
residue at both extremes of the domain, resulting in the final
LCD.

LCD-Composer offers a variety of optional parameters
that can be specified by users at runtime to tailor LCD-
Composer behavior to suit individual purposes. Optional
parameters include scanning window size (default = 20aa),
minimum percent composition threshold (default = 40),
minimum linear dispersion threshold (default = 0.5), and
an amino acid or group of amino acids of interest. To help
guide the choice of non-default parameters, the effects of
varying each parameter on LCD identification and defini-
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Figure 1. Depiction of linear dispersion parameter. Linear dispersion is
calculated from the normalized standard deviation in the combined spac-
ing values for all residues of interest and all other residues. Large gaps
lead to large standard deviations, resulting in low linear dispersion values.
Conversely, small gaps with uniform spacing leads to small standard devi-
ations and high linear dispersion values. The linear dispersion scale ranges
from 0.0 to 1.0, with high linear dispersion values indicating well-mixed
sequences.

tion were systematically evaluated and are included in Sup-
plementary Figures S4 and S5. Additionally, we evaluated
the speed and scalability of LCD-Composer on a variety of
model proteomes. LCD-Composer is reasonably fast (∼4 s
and ∼30 s for analysis of the yeast and human proteomes,
respectively, on a basic desktop computer; see Material and
Methods) with a computation time that scales linearly with
proteome size (Supplementary Figure S6), making it suit-
able for multi-proteome analyses.

To highlight the diversity of LCD features and contexts,
we identified proteins with specific types of LCDs or com-
binations of LCDs (Figure 3). We broadly classify these sit-
uations into four main categories: (i) proteins with only a
single type of LCD (‘simple LCDs’; Figure 3A); (ii) proteins
with multiple, non-overlapping LCDs from distinct classes
(‘co-occurring LCDs’; Figure 3B); (iii) LCDs that exhibit
a clearly predominant amino acid, but also exhibit a sub-
sidiary preference for a second type of amino acid (‘LCD
subclasses’; Figure 3C) and (iv) LCDs that can be charac-
teristically defined by enrichment of multiple types of amino
acids (‘multifaceted LCDs’; Figure 3D). Each of these situ-
ations is evaluated in greater detail below.

A comprehensive survey of simple LCDs and organisms with
extreme LCD content across all domains of life

The computational efficiency of LCD-Composer is suffi-
cient to perform high-throughput analyses on multiple pro-

teomes in a relatively short span of time. To gain a broad
perspective of whole-proteome LCD content within and
across domains of life (we refer to viruses as a ‘domain of
life’ for simplicity only), we ran LCD-Composer for each
amino acid using default parameters on all reference pro-
teomes available on the UniProt website (n = 18 896). All
identified LCDs are available as a supplementary resource
at (46).

To explore gross differences in whole-proteome LCD
content between domains of life, the percentage of each pro-
teome classified as LCD was calculated for each LCD class.
Proteomes were then binned within each domain of life
based on the percentage of the proteome classified as LCD
for each LCD class (Figure 4 and Supplementary Tables
S1, S2). For most amino acids, the proportion of organisms
with at least some LCD content progressively increases in
the order viruses→archaea→bacteria→eukaryota. How-
ever, the different domains of life showed distinct biases in
terms of which class of LCDs was most likely to be highly
enriched. For example, S-rich LCDs constitute >0.5% of
each proteome for nearly all eukaryotic organisms, yet S-
rich LCD content rarely exceeds 0.1% for the majority of
archaeal, bacterial, and viral organisms. By contrast, bac-
teria were far more likely than other types of organisms to
have a relatively high (>2%) A-rich LCD content.

While the majority of organisms contain relatively low
LCD content for each LCD class, we were intrigued by the
small proportion of organisms that contain an unusually
high percentage of their proteome classified as LCD. To ex-
plore organisms from each domain with the highest overall
LCD content, the total LCD content was determined for
each organism by summing the percentage of the proteome
classified as LCD across all LCD classes. Eukaryotic organ-
isms achieve the most extreme overall LCD content (∼15–
38% for the top 30 organisms), followed by viruses, bac-
teria, and archaea, respectively (Figure 5). The LCD con-
tent profiles for high-LCD organisms differs substantially
between domains of life. For example, high-LCD archaea
tend to have higher proportions of negatively charged (D-
or E-rich), T-rich, and V-rich LCDs compared to high-LCD
organisms from other domains (Figure 5A). The top 5 bac-
terial organisms contain unusually high proportions of I-
rich, K-rich, and N-rich LCDs, whereas the majority of the
remaining 25 organisms tend to have an extremely high per-
centage classified as A-rich LCD (Figure 5B). High-LCD
eukaryotic organisms tend to have a high percentage of A-
rich and S-rich LCD coupled with either a high proportion
of Q-rich LCD or G-rich LCD. Interestingly, humans are
among the top 30 organisms (out of 1473) in terms of total
LCD content, yet exhibit a remarkably diverse LCD profile
consisting predominantly of A-, E-, G-, K-, L-, P-, Q-, R-
, S- and T-rich LCDs (Figure 5C). Finally, the majority of
high-LCD viruses are torque teno viruses that tend to have
high percentages of R-, P-, G- and S-rich LCDs, whereas
alphaherpes viruses have high A-, G- and P-rich LCD per-
centages, and hepatitis viruses exhibit high E- and G-rich
LCD percentages (Figure 5D).

Overall these data reveal large-scale trends in LCD con-
tent across organisms, identify organisms with extreme
LCD content, and serve as an accessible resource for LCDs
in all reference proteomes currently available from UniProt.
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Figure 2. Computational procedure for identifying LCDs of interest. Identification of LCDs occurs in two stages. (A) In the first stage, protein sequences
are scanned using a sliding window. For each window subsequence, the percent composition of the amino acid(s) of interest and its linear dispersion are
calculated. (B) In the second stage, overlapping domains that pass the composition and linear dispersion criteria are merged into a single domain, then
trimmed such that the final residue at both termini are an amino acid of interest.
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Figure 3. Examples of LCD contexts within individual proteins. (A) An LCD-Composer scan of the Sis1 protein identifies two distinct G-rich domains
that pass the composition and linear dispersion thresholds. (B) A complete LCD-Composer scan searching for all possible types of single-amino acid
LCDs identifies multiple non-overlapping LCDs of distinct classes in the Mot3 protein. (C) The Gcr2 protein contains an N-rich domain with a subsidiary
preference for G. (D) The Mnn4 protein contains a multifaceted LCD with a high and roughly balanced K/E composition.

In the ensuing sections, we utilize a limited set of model or-
ganisms to explore relationships between LCD composition
and LCD function in greater depth.

Common and unique functions of LCDs across eukaryotic
model organisms

As demonstrated in Figures 4 and 5, and consistent with
previous research, proteome compositions and the number
of instances of each type of LCD often differ between or-
ganisms (1,2,5,9,20). However, similar LCDs may perform
related functions across organisms owing to shared bio-
physical properties. To explore common and unique func-
tional relationships for each LCD class across a limited set
of model organisms, we collected all LCDs identified within
the proteomes of 7 common eukaryotic model organisms
(S. cerevisiae, C. elegans, D. melanogaster, D. rerio, X. lae-
vis, M. musculus and H. sapiens) and performed a sepa-
rate Gene Ontology (GO) analysis for each class of LCDs
within each organism. The complete list of LCDs identified
for each organism is provided in Supplementary Table S3
(127 472 distinct LCDs across the seven eukaryotic model
organisms).

For most LCD classes, a substantial number of func-
tional associations are significantly enriched in at least one
organism (Figure 6; see Supplementary Table S4 for the
number of times each significantly enriched functional an-
notation was detected across the set of model organisms;
complete functional annotation results for all LCD classes
for all seven model organisms are provided in Supplemen-
tary Table S5). In many instances, an identical GO term was
significantly enriched for the same LCD class in more than
one organism. Additionally, the mean proportion of overlap
in GO terms is unanimously higher for comparisons of the
same LCD class across organisms (e.g. A-rich LCDs ver-
sus A-rich LCDs) than for comparisons of distinct LCD
classes across organisms (e.g. A-rich LCDs versus E-rich
LCDs), indicating that the observed GO term conservation
is an effect specifically related to each LCD class (Supple-
mentary Figure S7 and Table S6). Finally, similar results
are obtained when protein sampling is weighted by protein
length (Supplementary Figure S8), all protein isoforms are
included in the original LCD analysis (Supplementary Fig-
ure S9), GO annotations assigned on the basis of sequence
homology are excluded from the gene annotation files (Sup-
plementary Figure S10), or GO terms (rather than proteins)
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Figure 4. Cross-domain comparison of LCD content across all proteomes for each LCD class. LCDs were identified using LCD-Composer with default
parameters for all proteomes available from UniProt. For each LCD class, the percentage of each proteome classified as LCD was defined as the percentage
of amino acids lying within LCD regions out of the total proteome size (in number of amino acids). Within each domain of life, organisms were then sorted
into one of seven categorical bins based on the percentage of the proteome classified as LCD for each LCD class [none (0%), extremely low (0–0.1%), very
low (0.1–0.5%), low (0.5–2%), medium (2–5%), high (5–10%), very high (10–15%), or extremely high (>15%)]. The proportion of total proteomes for each
domain of life was then calculated for each bin and plotted as a stacked bar chart. For all organisms, the ‘additional’ file containing sequences of known
protein isoforms (when available) was combined with the corresponding organism’s main proteome prior to analyses.
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Figure 5. Cross-domain comparison of organisms with the highest total LCD content. For each domain of life, the total percentage of LCD content was
calculated as the sum of the individual LCD content percentages for each LCD class (note that, in some cases, this method results in a slight overestimation
of total LCD content due to overlapping LCDs from different classes but was chosen to preserve LCD percentages for individual LCD classes). Organisms
were then ranked from highest to lowest and the LCD percentages (parsed by LCD class) were plotted for the top 30 organisms for Archaea (A), Bacteria
(B), Eukaryota (C) and Viruses (D). LCD percentages for all organisms (including those ranking below the top 30) and all LCD classes are available in
Supplementary Table S1.

are iteratively sampled (Supplementary Figure S11 and Ta-
ble S7).

For the majority of LCD classes, ∼15–20% of all enriched
GO terms are shared across three or more organisms (Sup-
plementary Figure S12), suggesting that some classes of
LCDs are specifically suited for certain cellular and molec-
ular functions across eukaryotes. 175 GO terms spanning
14 LCD classes (A, D, E, F, G, H, I, K, L, P, Q, R, S
and V) are significantly enriched for four or more distinct
organisms (∼10% of all enriched GO terms). For exam-
ple, D-rich, E-rich and K-rich LCDs are individually sig-
nificantly associated with the nucleus and/or nucleolus in
all 7 eukaryotic organisms examined (and related functions
such as histone, chromatin, and/or DNA binding in six
of seven organisms), consistent with previous observations
and the known association of highly charged domains with

the nucleus/nucleolus (44,47–49). L-rich LCDs are signifi-
cantly associated with integral membrane proteins involved
in transmembrane transport in all seven eukaryotes. Q-rich
LCDs are associated with the regulation of transcription
by RNA polymerase II in all seven eukaryotes, consistent
with previous observations (8,9,19,50). R-rich LCDs are
specifically associated with RNA-binding and the regula-
tion of RNA-splicing in six of the seven organisms. S-rich
LCDs are associated with an identical set of nine functional
annotations related to nuclear localization, DNA-binding,
and transcription across six of the seven eukaryotic organ-
isms. While previous studies have uncovered a small subset
of these associations (3,6,8,9,19), the composition-centric
method employed by LCD-Composer yields, to our knowl-
edge, the most comprehensive set of linkages between LCD
properties and their common functions across eukaryotes.
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Figure 6. Identification of identical and unique GO terms associated with each LCD class across seven model eukaryotic organisms. GO analyses were
performed independently for each LCD class within each eukaryotic model organism. For each LCD class, significantly enriched GO terms were collected
for all eukaryotic model organisms in our study. The number of times each enriched GO term occurred across organisms was then calculated and plotted.
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Multifaceted composition criteria aid in the identification of
specific subclasses of LCDs

Some classes of LCDs are characteristically enriched in
multiple amino acids, either individually (a single residue
from the group comprising the majority of the LCD; Fig-
ure 3C) or in combination (co-occurring within the same
LCD; Figure 3D). For instance, prototypical yeast prion
domains are strongly enriched in Q and/or N residues, but
often have a subsidiary bias for Y (19,51), which is impor-
tant for prion formation (52,53). R/G/Y-rich domains have
been associated with liquid-liquid phase separation (LLPS)
or liquid–solid gelation, which appear to be related to dy-
namic interactions in membraneless organelles and/or nu-
clear pore complexes (44,54–61). Furthermore, the spac-
ing of aromatic residues in certain LLPS-competent do-
mains tends to promote LLPS (38), and R/G/Y compo-
sition criteria have already been incorporated into a pre-
diction method for identifying similar domains (62). A P-
rich LCD (with additional biases for Q/N/G) modulates
the ability of the yeast polyA-binding protein, Pab1, to
phase separate in response to stress, and this effect could
be tuned by altering the hydrophobicity of the LCD (63).
Highly-charged domains often adopt a variety of disor-
dered conformations (41,42), though some highly-charged
domains with roughly balanced positive and negative amino
acid compositions and regular spacing can form �-helices
(39,40). Therefore, in addition to simple single-amino acid
searches, LCD-Composer allows for specification of multi-
faceted composition criteria involving multiple amino acids
at different minimum composition percentages.

To illustrate the use of multifaceted composition criteria
to identify specific types of LCDs, we ran LCD-Composer
on the yeast proteome using composition criteria corre-
sponding to defined features of experimentally character-
ized LCDs (Table 1). Specification of multifaceted compo-
sition criteria primarily works using ‘and’ logic. For ex-
ample, the command-line option ‘-a QN Y -c 40 10’ (-
a referring to amino acids of interest, and -c referring
to corresponding minimum composition thresholds) stip-
ulates that a domain must have a combined Q/N com-
position exceeding 40% and a Y content exceeding 10%.
The combination of these constraints would aid in the
identification of domains that are predominantly Q/N-rich
but may have a secondary bias for Y. The command-line
option ‘-a G RY -c 30 15’ identifies domains with a pri-
mary G enrichment ≥30% and a secondary enrichment
of R/Y residues ≥15%. A simple composition analysis of
the Pab1 P-rich LCD examined in (63) revealed Q/N, P
and G compositions of ∼20%, 19% and ∼15% respectively,
with aliphatic residues being important subsidiary compo-
nents but variable with respect to predominant aliphatic
residue across organisms. Conservative composition thresh-
olds based on these values identifies a number of candidate
domains that may have related physicochemical behavior.
Finally, the composition criteria ‘-a DE KR -c 40 40’ iden-
tifies highly charged domains containing a high fraction
of both positively-charged and negatively-charged amino
acids. A number of the identified domains exhibit a charge
composition and patterning characteristic of charged single
�-helices [e.g. Mnn4 and Fpr3; (39,40)], while others have

sufficient charge composition but irregular charge spac-
ing (e.g. Pxr1). Therefore, multifaceted composition crite-
ria can (i) result in identification of LCDs whose collec-
tive composition exceeds the minimum composition thresh-
old even though the individual amino acid compositions
do not, (ii) identify domains with both primary and sec-
ondary amino acid biases and (iii) selectively exclude LCDs
that would be identified by single-amino acid searches but
are not of interest to the user. Importantly, although some
LCD-identification methods can identify primary and sec-
ondary amino acid biases, they cannot (to our knowledge)
simply and specifically search for such domains using sep-
arate composition thresholds or customized amino acid
groupings.

Exhaustive composition analyses illuminate a second layer of
compositional and functional diversification among LCDs

Secondary compositional biases have been noted previously
for specific classes of LCDs (8,9) but have not been thor-
oughly examined for all LCDs. Secondary biases among
LCDs could, in principle, lead to subclasses of LCDs within
each primary LCD class. To explore this possibility, the
composition of all 20 canonical amino acids was calcu-
lated for each individual LCD identified by LCD-Composer
within the yeast proteome. Indeed, many primary classes of
LCDs exhibit strong preferences for a second amino acid
resulting in clustered subclasses of LCDs (Figures 7 and 8,
Supplementary Figures S13, S14 and Table S8). For some
types of LCDs a single cluster is observed, indicating a
strong secondary preference for only one type of amino acid
(e.g. T-rich LCDs with a strong secondary preference for S;
Figures 7, 8 and Supplementary Table S8). For other classes
of LCDs multiple distinct clusters of varying sizes are ob-
served (e.g. D-rich LCDs exhibiting secondary preferences
for E, N or S, Figures 7, 8 and Supplementary Table S8),
suggesting a partitioning of the primary LCDs into spe-
cialized subclasses. Strikingly, in many cases the secondary
preferences are not strongly overlapping even for apparently
similar classes of LCDs. For example, while both D-rich
and E-rich LCDs exhibit secondary preferences for each
other, E-rich LCDs contain a cluster of LCDs secondarily
enriched in K, whereas D-rich LCDs are almost completely
devoid of secondary enrichment for K (Figures 7, 8 and
Supplementary Table S8). Similarly, N-rich LCDs exhibit
secondary preferences for D or S, while Q-rich LCDs ex-
hibit secondary preferences for H, L or P (Figures 7, 8 and
Supplementary Table S8).

These observations suggested that particular subclasses
of LCDs emerge due to functional specialization within
each primary LCD class. Therefore, we re-analyzed the
yeast proteome with LCD-Composer using the built-in
capacity for specifying multifaceted composition criteria.
Specifically, for each of the 20 canonical amino acids, the
yeast proteome was searched for all LCDs with at least 40%
composition of the primary amino acid and at least 20% of
a secondary amino acid (Figure 9A,B), resulting in 380 pos-
sible pairwise search combinations (each of the 20 primary
amino acids by each of the 19 possible secondary amino
acids). GO term analyses were performed for each set of
identified LCDs, which we refer to as LCD ‘subclasses’. A
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Table 1. Examples of LCDs identified by LCD-Composer with multifaceted composition search criteria. The yeast proteome was evaluated using LCD-
Composer with varying search parameters (‘-a’, amino acids used in search; ‘-c’, minimum composition thresholds corresponding to amino acids in ‘-a’;
‘-w’, scanning window size; ‘-d’, linear dispersion threshold)

Domain type Search parameters
# of Domains

identified Examples of identified domains
Protein
source

Multifaceted prion-like
domains

-a QN Y
-c 40 10
-w 60
-d 0.6

18 • QHRYMEGFSNNNNKQYRQNRNYNN
NNNNSNNNHGSNYNNFNNGNSYIK
GWNKNFNKYRRPSSSSY

• Ksp1

• QQQQPQQQPAYYDIFGNPISQDEYLQ
YQYQQDQEQAMAQQRWLDQQQEQQ
QLAEQQYFQQQQQ

• Ent2

G/R/Y-rich domains
associated with LLPS

-a G RY
-c 30 15
-w 60
-d 0.7

10 •GEYIDNRPVRLDFSSPRPNNDGGRGG
SRGFGGRGGGRGGNRGFGGRGGAR
GGRGGFRPSGSGANTAPLGRSRNTAS
FAG

• Nsr1

• GPPKPKNKKKRSGAPGGRGGASMG
RGGSRGGFRGGRGGSSFRGGRGGSSF
RGGSRGGSFRGGSRGGSRGGFRGGRR

• Gar1

Pab1-like P-rich LCDs -a QN P G ILMVF
-c 15 15 10 10
-w 60
-d 0.5

52 • PRYYQPQQPQYPQYPQQQRYYPQQAP
MPAAAPQQAYYGTAPSTSKGSGHGGA
MMGGLLGVGAGLL

•Wwm1

• QAQARQNQGTAPLNPYPGLTVTEPSF
ANPAGGYADGDLYPVGTSHPDWSGGL
PNPLGNPSSQ

• Fub1

Highly charged domains (w/

high fraction of positively +
negatively charged residues)

-a DE KR
-c 40 40
-w 30
-d 0.5

10 • EDEEKKKNEEEEKKKQEEKNKKNE
DEEKKKQEEEEKKKNEEEEKKKQE

•Mnn4

• EEEQKEEVKPEPKKSKKEKKRKHEEK
EEEK

• Fpr3

• KKRKREGDDSEDEDDDDKEDKDSD
KKKHKKHKKHKKDKKKD

• Pxr1

priori, we expected three possible outcomes. First, a GO
term may co-segregate with specific subclasses of LCDs (i.e.
the GO term is ‘retained’ by at least one subclass), suggest-
ing that the original enrichment observed may actually be
attributable to a specialized subset among the larger LCD
class. Second, a functional annotation might be enriched
for the primary LCD class as a whole but ‘lost’ among the
LCD subclasses, likely due to a reduction in sample size or
to the contribution of multiple LCD subclasses to the orig-
inal enrichment. Finally, ‘new’ GO term annotations may
appear for specific subclasses of LCDs if those LCDs (and
not other subclasses of LCDs) fulfill a specialized functional
role in the cell (effectively modulating the ‘signal-to-noise’
ratio via retention of relevant LCD subclasses and exclusion
of irrelevant subclasses).

GO term retention, loss, and de novo appearance was de-
termined for all primary LCD classes and secondary LCD
subclasses across all seven eukaryotic organisms. Func-
tional annotations for nearly all primary classes of LCDs
exhibit each of the three possible effects resulting from
subclassification (retention, loss, and de novo appearance),
though to varying degrees across LCD class and organism
(Supplementary Table S9). For example, S-rich LCDs in
yeast are associated with roughly equal proportions of re-
tained, new, and lost GO terms, while A-rich LCDs are as-
sociated with equal proportions of new and retained GO
terms (Figure 9C and Supplementary Table S9). Proteins
with G-rich LCDs exhibit the highest proportion of new
GO terms (excepting R, which only had one associated GO
term), though all three possible subclassification effects are
observed (Figure 9C). For example, amino acid transport

functions associated with the primary class of G-rich do-
mains in the yeast proteome do not appear in any of the
subclasses, so these annotations were lost upon subclas-
sification (Figure 9D). However, multiple annotations re-
lated to protein folding and protein chaperone activity are
maintained or new across certain subclasses (namely, G-rich
LCDs with a secondary preference for A, F or P). Simi-
larly, functions related to mRNA-binding, ribonucleopro-
tein complexes, and translation initiation factor binding are
specifically maintained by G-rich LCDs with a secondary
preference for N, R or F residues. Finally, multiple func-
tional annotations related to tubulin, microtubules, and
microtubule-mediated nuclear migration are specifically as-
sociated with G-rich LCDs with a secondary preference for
L residues, even though these functions were not detected
as enriched among G-rich domains generally (i.e. de novo
appearance only upon subclassification). Notably, the ma-
jority of GO terms associated with most LCD classes are
still detected when highly homologous proteins within each
LCD class are excluded (Supplementary Figure S15A, B).
Additionally, the log-odds ratios indicating the degree of
GO term enrichment for subclassified LCD protein sets is
nearly always greater than that of primary LCD protein sets
and, in many cases, with non-overlapping confidence inter-
vals (Supplementary Table S10), indicating that LCD sub-
classification specifically and broadly enhances enrichment
of functional annotations.

In summary, the composition-centric approach employed
by LCD-Composer illustrates the diversity of LCDs within
and across eukaryotic organisms, and enables finer, multi-
layered classification of LCDs.
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Figure 7. Yeast primary LCD classes exhibit unique preferences for secondary amino acids. Complete composition analyses were performed for all LCDs
for which a secondary amino acid could be unambiguously assigned to a single residue type (i.e. a second amino acid with the next highest composition,
excluding the primary amino acid). Heatmaps indicate percent composition of each amino acid (x-axis) for each LCD (y-axis), on a scale from 0–100%.
Some classes of LCDs exhibit a strong preference for a single secondary amino acid (T-rich LCDs) or multiple secondary amino acid classes (D-rich, E-
rich, N-rich and Q-rich LCDs), and secondary preferences observed for some primary LCD classes do not strongly overlap with those of related primary
LCD classes (e.g. D-rich versus E-rich LCDs, and N-rich versus Q-rich LCDs). Complete composition analyses for the remaining LCD classes and model
organisms are indicated in Supplementary Figures S13, S14 and Table S3).

Tracking co-occurrence of distinct classes of LCDs within
individual proteins reveals functional associations for multi-
LCD proteins

As depicted in Figure 3B, some proteins contain multi-
ple non-overlapping LCDs from distinct LCD classes. This
raises the intriguing possibility that proteins with multiple
concurrent LCDs (e.g. proteins with both a G-rich domain
and a Q-rich domain; Figure 10A) could specifically partic-
ipate in particular functions that are not associated with the
LCD classes individually. A number of yeast proteins con-

tain non-overlapping LCDs of distinct LCD classes (Fig-
ure 10B). For each LCD class, multi-LCD proteins were
further parsed into separate classes based on the predomi-
nant residue of each additional non-overlapping LCD. GO
term analyses were then performed separately for each set
of parsed multi-LCD proteins. Most primary LCD classes
exhibit a mixture of GO term loss, retention, and de novo ap-
pearance upon multi-LCD sorting (Figure 10C and Supple-
mentary Table S11). For G-rich LCDs, the majority of GO
terms are lost when LCDs are divided among co-occurring
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Figure 8. Quantitative analysis of secondary amino acid preferences among primary LCD classes. For each LCD class, the number of LCDs observed for
each possible secondary amino acid was compared to corresponding window frequencies derived from a whole-proteome scan of the yeast proteome (see
Materials and Methods). The natural log of the odds ratio (lnOR) indicates the degree of enrichment or depletion of LCDs with a secondary amino acid
relative to whole-proteome frequencies (see Material and Methods section). Indications of statistical significance are from Bonferroni-corrected P-values
(***P < 0.001, **P < 0.01, *P < 0.05, see Supplementary Table S8). Secondary amino acid categories with a scaled whole-proteome frequency <1 are
colored teal to distinguish them from categories with a true lnOR = 0. For secondary amino acid categories with no observed LCDs (colored orange), an
imputed observed value of 1 was used as a conservatively biased estimator.
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Figure 9. The effects of subclassification on GO term retention, loss, or gain reveal a second layer of functional diversification among yeast LCDs. (A)
Multifaceted LCD-Composer search criteria were used to identify LCDs for each possible LCD subclass (≥ 40% composition for a primary amino acid
and ≥ 20% composition for a secondary amino acid). (B) Example of diverse G-rich domains with differing secondary amino acids and secondary amino
acid compositions. (C) For each primary LCD class, the proportions of GO terms retained, lost, and new upon subclassification are indicated as stacked
bars. (D) Complete GO term retention, loss, and de novo appearance (‘new’) network for yeast G-rich LCDs. Full results for all LCD subclasses across all
model organisms are available in Tables S9 and S10.

LCD categories, likely due to smaller sample sizes associ-
ated with dual enrichment. However, proteins with non-
overlapping G-rich and Q-rich LCDs are associated with
nuclear pore organization and transport functions (Figure
10D). Importantly, these functional associations are also
new GO terms when Q-rich LCDs are considered as the
primary class (Figure 10E), indicating that these functions
are specifically associated with the subset of LCDs contain-
ing both G-rich and Q-rich LCD classes (and not the indi-
vidual LCD classes). Enriched GO term associations were
not due to highly homologous proteins within each LCD
class (Supplementary Figure S15C). Again, the degree of
GO term enrichment for multi-LCD protein sets was nearly

always greater than the degree of GO term enrichment for
the original primary LCD protein sets (Supplementary Ta-
ble S12). Together, this suggests that proteins containing
specific combinations of non-overlapping LCDs may also
fulfill specialized molecular roles.

DISCUSSION

Recent studies have suggested that the amino acid composi-
tion and linear dispersion of amino acids within LCDs are
important––if not predominant––features governing their
biophysical behavior (15,41,64–68). LCD-Composer was
developed with this emerging view in mind. Although a va-
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Figure 10. GO term retention, loss, or gain as a result of LCD co-occurrence indicates shared and unique functions of multi-LCD proteins. (A) The Nup116
protein contains non-overlapping G-rich and Q-rich LCDs. (B) Heatmap depicting the number of instances of co-occurring LCDs for each LCD class. The
upper-right half is numerically equivalent and therefore omitted for simplicity. (C) For each primary LCD class, proteins with at least one additional non-
overlapping LCD were sorted into each co-occurring LCD secondary class. Each secondary class was then evaluated for significantly enriched functional
associations. The resulting proportions of GO terms retained, lost, and new for multi-LCD proteins are indicated as stacked bars. (D) Complete GO term
retention, loss, and new network for yeast G-rich multi-LCD proteins. (E) The complete GO network for yeast Q-rich multi-LCD proteins demonstrates
reciprocal de novo appearance of the new GO terms associated with G-rich multi-LCD proteins. Q-rich multi-LCD proteins also exhibit additional class-
specific retention, loss, and gain of GO terms. Full results for all multi-LCD proteins across all model organisms are available in Tables S11 and S12.

riety of methods exist for identifying LCDs in proteins, the
central focus of LCD-Composer is the amino acid compo-
sition of LCDs, making it intuitive to biologists and rele-
vant to the actual physicochemical properties of the iden-
tified LCDs. While primary sequence undoubtedly plays a
role in the functional properties of some LCDs, methods
designed for initial classification of LCDs are an impor-
tant step before more nuanced classification on the basis of
specific features. In the future, integration of additional in-
formation including post-translational modifications, short
linear motifs, intrinsic disorder, repetitiveness, and related
features may lead to a richer LCD classification system.

LCD-Composer was designed specifically for the iden-
tification of LCDs on the basis of customizable compo-

sition profiles, irrespective of whole-proteome amino acid
frequencies. In contrast to existing methods relying on
mathematical sequence complexity or statistical enrichment
of amino acids, LCD-Composer’s composition-based ap-
proach is extremely flexible, intuitive to use, and generates
results that are easy for the average user to interpret. The
simplicity of the LCD-Composer method and search pa-
rameters enables multifaceted LCD search criteria, includ-
ing user-defined groupings of amino acids and distinct com-
position thresholds for each amino acid or group of amino
acids, which cannot be easily implemented with existing
methods.

The speed and specificity of LCD-Composer make it
a powerful yet intuitive LCD-identification method. Our

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/3/2/lqab048/6285187 by C

olorado State U
niversity user on 13 D

ecem
ber 2021



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 17

database of simple LCDs identified for each LCD class
across all organisms available from UniProt should serve
as a valuable resource for researchers interested in specific
types of LCDs. However, we would like to emphasize that
these LCDs are derived from only one set of search criteria,
even though LCD-Composer allows for an infinite number
of combinations of amino acid(s) of interest, window size,
composition threshold(s), and dispersion threshold. There-
fore, LCD-Composer may still be of great utility to users
wishing to specify non-default or composite search param-
eters.

Our survey of LCDs in all reference proteomes raises a
number of interesting and currently unanswered questions.
The proteomes of Dictyostelium discoideum and Plasmod-
ium falciparum were already known to have extremely high
Q/N-rich and N-rich LCD content, respectively, and ex-
hibit corresponding adaptations in proteostasis machinery
that specifically accommodate such a high prevalence of
aggregation-prone domains (69,70). However, our database
of LCDs unveils a multitude of additional organisms with
unusually high LCD content for specific classes of LCDs
(even typically rare types of LCDs). For example, M-rich
domains constitute ∼0.75% of the proteome of the intesti-
nal parasite, Echinostoma caproni (compared to ∼0.006%
average M-rich content among eukaryotes), while H-rich
domains constitute nearly 2% of the Spodoptera litura
(Asian cotton leafworm) proteome. How might these or-
ganisms have adapted to such an unusually high preva-
lence of particular LCDs or, conversely, how might prior
adaptations have facilitated the development and utiliza-
tion of these LCDs? What are the implications for pro-
tein synthesis, folding, and degradation systems in these or-
ganisms, and how do these systems differ across organisms
with extremely high LCD content for different LCD classes?
Are these adaptations specific to certain ecological niches?
How might the discovery of new proteostasis machinery or
mechanisms aid in the development of new biotechnology
or human disease therapeutics? LCD-Composer and our
database of LCDs provide a valuable launchpad for explor-
ing these questions in both model and non-model organ-
isms.

LCD-Composer’s customizable search parameters enable
specific and selective LCD searches. We demonstrate that
these features can be used to resolve LCDs into richer hier-
archies on the basis of multiple compositional features, in-
cluding LCD subclasses (enriched in more than one amino
acid) and co-occurring LCDs (non-overlapping LCDs in
the same protein). Each level of the hierarchy appears to
be of functional importance: in many cases, primary LCD
classes were associated with particular functions that were
lost upon subclassification, while other functional associa-
tions were only detected after subclassification. Therefore,
integrating both fine and coarse resolution of LCDs yields
a more complete picture of LCD functional specificity and
diversity. However, it is also worth noting that some LCDs
may exist for reasons unrelated to protein function, such
as genomic nucleotide composition or non-functional re-
peat expansion. While GO term analyses can unveil sta-
tistical relationships between LCD classes and associated
LCD functions, definitive assignment of functions (or lack
thereof) to specific LCDs identified by LCD-Composer

should be determined experimentally. Finally, particular
classes of LCDs fulfill similar or identical molecular roles
across a broad range of model eukaryotes, suggesting that
the unusual sequence features of LCDs may occupy molec-
ular niches and are indispensable for certain molecular pro-
cesses. In our view, the combination of simplicity, flexibil-
ity, and direct quantification of biochemically relevant LCD
features make LCD-Composer a powerful, intuitive, and
adaptable tool for protein research.

DATA AVAILABILITY

The LCD-Composer script and detailed usage informa-
tion are available at https://github.com/RossLabCSU/
LCD-Composer. All code required to fully repro-
duce the data presented in this paper are available at
https://github.com/RossLabCSU/LCD-Composer/tree/
master/Reproducibility. Databases of all simple LCDs
identified using LCD-Composer’s default parameters for
all available reference proteomes from UniProt are available
at (46).

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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