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Abstract

A variety of studies have suggested that low-complexity domains (LCDs) tend to be intrinsi-

cally disordered and are relatively rare within structured proteins in the Protein Data Bank

(PDB). Although LCDs are often treated as a single class, we previously found that LCDs

enriched in different amino acids can exhibit substantial differences in protein metabolism

and function. Therefore, we wondered whether the structural conformations of LCDs are

likewise dependent on which specific amino acids are enriched within each LCD. Here, we

directly examined relationships between enrichment of individual amino acids and second-

ary structure tendencies across the entire PDB proteome. Secondary structure tendencies

varied as a function of the identity of the amino acid enriched and its degree of enrichment.

Furthermore, divergence in secondary structure profiles often occurred for LCDs enriched in

physicochemically similar amino acids (e.g. valine vs. leucine), indicating that LCDs com-

posed of related amino acids can have distinct secondary structure tendencies. Comparison

of LCD secondary structure tendencies with numerous pre-existing secondary structure pro-

pensity scales resulted in relatively poor correlations for certain types of LCDs, indicating

that these scales may not capture secondary structure tendencies as sequence complexity

decreases. Collectively, these observations provide a highly resolved view of structural ten-

dencies among LCDs parsed by the nature and magnitude of single amino acid enrichment.

Author summary

The structures that proteins adopt are directly related to their amino acid sequences. Low-

complexity domains (LCDs) in protein sequences are unusual regions made up of only a

few different types of amino acids. Although this is the key feature that classifies sequences

as LCDs, the physical properties of LCDs will differ based on the types of amino acids that

are found in each domain. For example, the sequences “AAAAAAAAAA”, “EEEEEE

EEEE”, and “EEKRKEEEKE” will have very different properties, even though they would

all be classified as LCDs by traditional methods. In a previous study, we developed a new

method to further divide LCDs into categories that more closely reflect the differences in

their physical properties. In this study, we apply that approach to examine the structures
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of LCDs when sorted into different categories based on their amino acids. This allowed us

to define relationships between the types of amino acids in the LCDs and their corre-

sponding structures. Since protein structure is closely related to protein function, this has

important implications for understanding the basic functions and properties of LCDs in a

variety of proteins.

Introduction

Protein sequence, in combination with surrounding physicochemical environment, funda-

mentally determines protein form and function. Protein sequences vary with respect to

sequence “complexity”, which is effectively a measure of the amino acid frequencies within a

region of defined length. Most naturally-occurring proteins contain a rich mixture of residues

drawn from the 20 canonical amino acids. However, a surprising number of proteins possess

relatively simple regions, termed low-complexity domains (LCDs), which are characteristically

comprised of only a subset of amino acids.

LCDs are found across a broad array of organisms [1], but they are particularly abundant in

eukaryotes and participate in a variety of normal and pathological processes [2–19]. Conse-

quently, a number of studies have examined the functions of LCDs and LCD-containing pro-

teins. Proteins with LCDs exhibit differences in metabolic regulation, molecular interaction

partners, subcellular localization, and molecular functions [18,20,21], all of which hinge upon

the primary amino acid enriched in each LCD [18]. Importantly, even LCDs enriched in

highly similar amino acids can be associated with specialized molecular functions and distinct

trends in metabolic regulation. For example, while both N-rich and Q-rich LCDs are associ-

ated with transcription, N-rich domains are also associated with P-bodies, whereas Q-rich

domains are associated with functions related to endocytosis [18]. Similarly, while enrichment

of most hydrophobic amino acids is associated with low protein abundance, low protein half-

life, and low translation efficiency, progressive enrichment of alanine or valine is associated

with complete opposite trends in protein metabolism [18].

While the functions of LCDs have been explored in a variety of organisms, the structural

characteristics of LCDs are relatively poorly understood. Early studies of LCDs indicated that

they are underrepresented among structured proteins in the Protein Data Bank (PDB) [22,23],

leading to the pervasive perception that LCDs are generally intrinsically disordered. Indeed

the most abundant types of LCDs in eukaryotic proteomes are those enriched in polar and

charged amino acids [14,15,18]. Naturally, these types of LCDs tend to adopt an ensemble of

disordered conformations, which may be expanded or collapsed depending on the composi-

tion and distribution of constituent amino acids [24]. However, under certain conditions,

even LCDs that favor disorder may adopt ordered conformations. For example, changes in

intracellular environment (e.g. pH) might induce folding of a disordered domain, or disor-

dered regions may adopt stable conformations when docked to folded intramolecular domains

or bound to intermolecular binding partners. Additionally, LCDs with less-extreme polar/

charge content may inherently favor folded conformations. Therefore, it is reasonable to

expect a variety of LCDs to adopt stable structures under particular conditions or in particular

sequence contexts, which is supported by recent analyses of LCDs (treated as a single class) in

structured proteins [3].

A variety of methods have been developed to identify LCDs [25–30]. Most of these methods

employ pre-defined statistical thresholds to classify domains as low or high complexity and

demarcate LCD boundaries. While these methods are extremely valuable and have contributed
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to a number of important discoveries, they also inherently possess a number of limitations

[18]. In essence, all LCD detection methods are fundamentally attempting to define regions in

which a small subset of the possible amino acids are present at high density. While unified by

this defining feature, LCDs are really a diverse set of domains with distinct physical properties;

these properties depend upon the amino acid(s) predominantly enriched in each LCD. Fur-

thermore, most methods for defining LCDs employ a statistically-defined threshold (which

may not reflect biologically-relevant criteria [18]) and do not distinguish between LCDs of

moderate compositional enrichment (e.g. 40% alanine content) and LCDs of extreme compo-

sitional enrichment (e.g. 100% alanine). Thus, parsing protein domains by both the predomi-

nant amino acid enriched in each domain and its degree of enrichment may reveal trends that

are obscured when LCDs are grouped without taking these compositional features into

consideration.

Here, we directly examine the relationship between local amino acid composition and

structural tendencies, with a particular focus on regions at compositional extremes (i.e. LCDs).

Although structured proteins are strongly biased toward sequences of high complexity, LCDs

are nevertheless abundant among structured proteins. Secondary structure tendencies among

LCDs diverge as sequences become less complex, and the secondary structure profiles depend

on both the type of amino acid enriched and its degree of enrichment. Despite the common

assertion that LCDs tend to be disordered, some types of LCDs exhibit a strong preference to

adopt ordered conformations. Additionally, structural tendencies diverge even for related

amino acids, suggesting that physicochemically-related LCDs are not always functionally syn-

onymous. While existing α-helix and β-sheet propensity scales perform remarkably well for

sequences of moderate to high complexity, we find that these scales systematically fail for cer-

tain types of LCDs. Finally, LCD-containing proteins are associated with distinct classes of

folds, dependent upon the type of LCD (i.e. the amino acid most enriched within the LCD).

These observations suggest that grouping all LCDs into a single class grossly oversimplifies the

structural tendencies exhibited by each type of LCD.

Results

A systematic survey of the PDB proteome reveals an abundance of residue-

specific LCDs

Although structured proteins present in the PDB are generally biased against LCDs [22,23],

this does not preclude the possibilities that: 1) certain types of LCDs (e.g. F-rich LCDs) may

tend to be highly structured, and 2) LCDs may be abundant and important within structured

proteins, despite the tendency to be less common than regions of higher complexity.

To systematically examine relationships between local amino acid composition and abun-

dance within protein sequences in the PDB, we first obtained a set of non-redundant PDB pro-

tein sequences with< 90% homology (see Methods). Additionally, membrane-embedded

proteins were excluded to account for differences in folding environment, which could con-

found downstream analyses (see S1 File for a list of all PDB chain IDs included in the final

dataset). Each PDB chain was exhaustively scanned with window sizes ranging from 10 to 100

amino acids, increasing the window size by 10 with each iteration (similar to the method

implemented in [18]). As mentioned previously, the essential feature underlying all methods

of LCD detection is enrichment in one (or a select few) of the 20 canonical amino acids. There-

fore, for each window, the percent composition for each amino acid was calculated. For any

given type of amino acid, the majority of protein chains exhibit low compositional enrichment

(Fig 1), indicating that most proteins are reasonably complex, which is consistent with previ-

ous studies and a priori expectations. However, for most amino acids, a substantial number of

Atypical structural tendencies among LCDs in the PDB proteome
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protein chains contain subsequences that achieve high compositions, particularly for smaller

scanning window sizes (Fig 1). For example, for most amino acids, there are hundreds to tens

Fig 1. LCDs are abundant in structured proteins. Each subplot indicates the frequency distributions for all peptide subsequences within PDB

proteins as a function of scanning window size and amino acid composition for each amino acid indicated in the subplot titles.

https://doi.org/10.1371/journal.pcbi.1007487.g001
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of thousands of proteins with 10-amino acid subsequences containing at least 40% composi-

tion attributable to a single type of amino acid: as a point of comparison, LCDs identified by

the SEG algorithm (perhaps the most widely-used LCD identification algorithm; [25]) typically

have a minimum of ~25–45% composition of the most enriched amino acid within a 12aa seg-

ment. In the most extreme case,>18k protein chains possess a region containing�40% leu-

cine residues in a 10-amino acid window. Therefore, LCDs are quite abundant in PDB

sequences despite the overall bias toward sequences of higher complexity.

To directly compare the frequencies in Fig 1 with frequencies obtained using traditional

methods of identifying LCDs, we employed a modified version of the SEG algorithm. Briefly,

PDB sequences were scanned using the default 12aa window size, and all segments scoring

�2.2 bits were classified as LCD segments. By default, the SEG algorithm does not distinguish

between LCDs of different types (i.e. LCDs strongly enriched in different amino acids). There-

fore, we modified the SEG algorithm to parse LCDs into amino acid-specific categories based

on the most frequent amino acid within each LCD, as indicated in [18] (also described in the

Methods section). This modification allows us to dissect specific relationships between LCD

types and their corresponding frequencies.

Distinct classes of LCDs exhibit markedly different frequencies within the PDB and within

eukaryotic proteomes (Fig 2). While A-rich and L-rich LCDs tend to be the most common

individual LCD types among PDB proteins (Fig 2A), LCDs enriched in charged or polar resi-

dues occupy most of the subsequent top-ranked positions with respect to frequency. When

LCDs are combined based on general physicochemical categorization, LCDs enriched in a

hydrophilic amino acid are the most abundant class both in terms of the number of PDB pro-

teins containing a hydrophilic LCD (albeit very slightly; Fig 2A, inset) and the total number of

regions classified as hydrophilic LCDs (Fig 2B, inset). To compare LCD frequencies in the

PDB to LCD frequencies among whole proteomes, identical analyses were performed for the

yeast and human proteomes (Fig 2C and 2D). In general, the percentage of proteins with

LCDs is higher among the yeast and human proteomes compared with the PDB for nearly

every type of LCD, indicating that the PDB is selectively biased against sequences with LCDs

both globally and for most types of LCDs individually (which is consistent with previous analy-

ses [3]). Proteins with hydrophilic LCDs are far more common than proteins with hydropho-

bic LCDs in the yeast proteome, both in terms of individual amino acids (Fig 2C) and when

grouped (Fig 2C, inset), and this margin is much larger in the yeast proteome than in the PDB.

With respect to LCD frequencies, the PDB more closely resembles the human proteome (Fig

2D), although minor differences are also apparent. For example, the margin between proteins

with hydrophilic LCDs and proteins with hydrophobic LCDs is slightly larger in the human

proteome compared to the PDB, although this margin is not as dramatic as that observed for

the yeast proteome. Proteins with G-rich LCDs are ~2-fold higher (in terms of percentage of

proteins with LCDs) in the human proteome compared to the PDB, while proteins with P-rich

LCDs are ~7-fold higher in the human proteome compared to the PDB. Since both the size of

the proteomes and the lengths of LCDs may differ across the different proteomes, we also eval-

uated the percentage of each type of residue found within the corresponding class of LCD (e.g.

the percentage of alanine residues within A-rich LCDs). This effectively allows for a normal-

ized comparison across proteomes with respect to enrichment of each type of amino acid

within LCDs vs. non-LCDs. Nevertheless, the results (Fig 2E) are largely in agreement with

those observed in Fig 2A–2D, indicating that both the percentage of proteins with each type of

LCD and the percentage of each type of residue found within its corresponding class of LCDs

robustly describe LCD enrichment across the examined proteomes.

Overall, these data highlight the abundances of LCDs when distinguished on the basis of

the predominant amino acid enriched in each LCD within the PDB and certain eukaryotic

Atypical structural tendencies among LCDs in the PDB proteome
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proteomes. If LCDs are treated as a single class, broad trends in structural tendencies will be

heavily biased by how common each type of LCD is in PDB sequences, even though LCDs of

different types may exhibit dramatically different structural tendencies and behavior.

Stratification of LCDs by degree of amino acid enrichment reveals dose-

dependent relationships between composition and structural tendencies

We were particularly interested in secondary structure tendencies corresponding to short

regions of high density of one or a few amino acid types (i.e. LCDs). By default, the SEG algo-

rithm uses a 12-amino acid scanning window. Therefore, for consistency with subsequent

analyses, we exhaustively re-scanned all PDB sequences with a 12aa scanning window and

binned each subsequence based on the composition of each amino acid within each subse-

quence (Fig 3). For each subsequence, the fraction of each secondary structure type was also

calculated and binned with the corresponding subsequence. The fraction of each secondary

structure type was then averaged across all subsequences within each composition bin (Fig 3)

and plotted (Fig 4; see Methods for additional description). For most amino acids, subse-

quences at extreme compositions are overwhelmingly disordered (Fig 4; light grey line), con-

sistent with previous observations. However, for a number of amino acids (particularly

hydrophobic and aromatic residues), subsequences maintain a substantial mean fraction of

alternative secondary structures. For example, A, F, I, L, M, V, W, and Y are predominantly

associated with α-helix or β-sheet preference at their respective extremes of enrichment. While

the degree of enrichment achieved by many of these residue types are often not as extreme as

the degree of enrichment for polar/charged residues, these subsequences are nevertheless typi-

cally classified as LCDs. It is important to note that LCD sample sizes tend to decrease as resi-

due count increases beyond ~3–4 residues for any given amino acid (as shown in Fig 1), which

can result in spuriously large changes in secondary structure proportions at high residue count

bins for each amino acid: therefore, analogous bar charts indicating sample sizes for each

amino acid across all residue count bins are indicated in S1 Fig for comparison.

A detailed inspection of the composition-to-structure tendencies reveals more nuanced dif-

ferences even between amino acids of very similar types. In order to facilitate a direct visual

comparison between related amino acids, the mean fraction of each type of secondary struc-

ture at increasing composition levels for each amino acid (from Fig 4) were linearly interpo-

lated and indicated as dynamic stacked bar charts in S1 Movie. For ease of comparison, amino

acids were clustered based on physicochemical properties.

For regions entirely lacking the amino acid of interest (“0 Residues of Interest” frame), sec-

ondary structure tendencies do not differ dramatically, and each category roughly approxi-

mates the whole-PDB tendencies. Regions lacking P or G have the highest proportions of α-

helix and β-sheet, and these proportions drop to among the lowest within the first shift

Fig 2. Abundances of classically-defined LCDs within the PDB and eukaryotic proteomes. The PDB proteome was exhaustively scanned using a 12aa window size, and

the Shannon entropy was calculated for each segment. Segments with Shannon entropy�2.2 bits were classified as LCDs. For each amino acid, LCDs were assigned to

that category if the frequency of the amino acid was� the maximum frequency for all amino acids within the LCD sequence. The total number of PDB chain sequences

with each type of LCD (A) and the total number of regions scoring as LCDs for each LCD category (B) are indicated. The number of proteins with each type of LCD were

similarly plotted for the yeast and human proteomes and indicated in (C) and (D) respectively. Additionally, the percentage of each amino acid found within LCDs of that

amino acid type is indicated in (E) for all 20 amino acids. For all plots, the LCDs for which the indicated amino acid was clearly the predominant amino acid in the LCD

sequence represent “unambiguous” LCDs, while LCDs for which another amino acid was equally abundant within the LCD sequence represent “ambiguous” LCDs.

Proteins were preferentially assigned to the “unambiguous” category if they contained at least one region that could be unambiguously identified as an LCD of a given

type. Insets in the upper-right corner of panels A-D indicate the frequencies of LCDs when grouped by physicochemical categories: hydrophobic (A, I, L, M, and V);

charged (D, E, H, K, and R); polar (C, N, Q, S, and T); aromatic (F, W, and Y); and hydrophilic (combination of charged and polar classes). Total values corresponding to

broad physicochemical categories in the insets do not represent the sum of the frequencies of individual types of LCDs, since some proteins contain multiple distinct types

of LCDs that fall into the same physicochemical category.

https://doi.org/10.1371/journal.pcbi.1007487.g002
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(domains with only one P or G), consistent with the known role of these residues in disfavor-

ing or precluding these secondary structure types (see, e.g., [31] and [32] for comparisons of

multiple α-helix and β-sheet propensity scales, respectively). Mean α-helix and β-sheet content

continues to decline precipitously as P content increases, while the disordered and irregularly-

structured fractions increase. Additional dose-response relationships are apparent between

composition and secondary structure for many other amino acids. With respect to physico-

chemically-related groups of amino acids, differences in secondary structure tendencies begin

to emerge with as few as 3 residues of interest and often become more pronounced as compo-

sition continues to increase. For example, among hydrophobic residues, V-rich regions tend

to have a higher proportion of β-sheet content relative to regions enriched in other

Fig 3. Depiction of computational strategy for relating local amino acid composition to secondary structure annotations across the PDB proteome. For each

amino acid, PDB sequences were scanned with a 12aa window size. For each peptide subsequence, the corresponding DSSP (i.e. secondary structure) annotations were

sorted into bins based on the frequency of the amino acid of interest (e.g. serine, in the depicted example). After an exhaustive scan of the PDB proteome, the mean

fraction of each secondary structure type was calculated within each residue count bin.

https://doi.org/10.1371/journal.pcbi.1007487.g003
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hydrophobic residues, and this disparity progressively increases from 3–6 residues of interest.

Regions with higher enrichment of these types of residues are rare or absent within the PDB,

Fig 4. Conformational tendencies are highly dependent on both amino acid type and degree of enrichment. The PDB proteome was exhaustively scanned using a

12aa window size as depicted in Fig 3. Secondary structure tendencies across a range of enrichment for each amino acid are depicted in separate subplots. Within each

subplot, scatter points represent the mean fraction of each secondary structure type across all peptide sequences within each indicated “residue count” bin. Sample sizes

for all amino acids and residue count bins are indicated in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1007487.g004
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resulting in spuriously large apparent changes in secondary structure tendencies. Similar

trends are apparent for other groups of amino acids. Among aromatic residues, mean α-helix

content is highest in F-rich regions, moderate in W-rich regions, and low in Y-rich regions,

with a concomitant inverse relationship with respect to β-sheet content. Q-rich regions tend to

maintain a higher fraction of α-helix content and lower fraction of β-sheet content compared

to other uncharged polar residues, and this divergence progressively increases at higher com-

positions. Interestingly, though N and Q are often considered synonymous, previous studies

have indicated that N-rich LCDs are more prone to form β-sheet-rich amyloid aggregates

compared to Q-rich LCDs [33,34]. Together with our observations, this suggests that the

higher β-sheet propensity for N-rich domains vis-à-vis Q-rich domains may reflect the bio-

physical behavior of these classes of LCDs in structured proteins generally (not just in the con-

text of amyloid aggregation). Finally, among the charged residues, H-rich and D-rich regions

tend to be associated with a higher mean fraction of disorder and lower fraction of α-helix con-

tent relative to E-rich, R-rich, and K-rich regions; this trend begins to develop at milder levels

of enrichment but is most apparent between 5–7 residues of interest.

To verify that these results are not a consequence of using a high homology threshold (90%)

to obtain the non-redundant set of PDB sequences, we also analyzed a non-redundant set of

PDB sequences with<40% sequence homology. Indeed the trends in secondary structure ten-

dencies among the 40% non-redundant PDB dataset (S2 Fig) are nearly indistinguishable from

those observed in Fig 4 for the 90% non-redundant PDB dataset, indicating that our original

observations are not heavily influenced by multiple instances of specific proteins with high

sequence homology and a low-complexity domain.

From these observations we conclude that, while LCDs as a single class are often associated

with intrinsic disorder, certain types of LCDs exhibit clear preferences for particular secondary

structures, and these structural tendencies are dependent upon the degree of enrichment for

each residue type.

Direct comparison of compositional enrichment to traditionally-defined

LCDs

To directly compare compositional enrichment with a set of LCDs defined using traditional

methods, we again implemented our modified version of the SEG algorithm, which parses

LCDs into types based on the most strongly-enriched amino acid. To gain an initial point of

reference, mean secondary structure content for the entire set of non-redundant PDB chain

sequences was first calculated. On average, α-helix content constitutes the highest fraction of

structured proteins, followed by β-sheet content and non-disordered “loop or other irregular

structure” content (Fig 5). Notably, the mean fraction of intrinsic disorder constitutes ~5–10%

of all secondary structure annotations. In contrast, LCDs as a single class are associated with a

greater degree of intrinsic disorder and concomitant compaction of the mean fraction of every

other secondary structure type except α-helix content (Fig 5). However, more importantly,

secondary structure profiles differ considerably when LCDs are parsed into sub-classes based

on the predominant amino acid. These differences closely mirror those observed when using

our unbiased, composition-centric approach. For example, Q-rich LCDs almost exclusively

prefer α-helical or disordered conformations, whereas N-rich LCDs exhibit lower α-helix con-

tent, higher β-sheet content, and a higher fraction of residues adopting non-disordered “loop

or irregular structure”. A remarkably similar trend is observed among their negatively charged

counterparts (E-rich and D-rich LCDs, respectively), suggesting that the slightly longer side

chains of Q and E (rather than their terminal functional groups) explain these differences.

Strikingly, all three main aromatic-type LCDs exhibit remarkably low intrinsic disorder

Atypical structural tendencies among LCDs in the PDB proteome
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content, roughly equal to that of structured proteins in general (“PDB” group), further empha-

sizing that the relationship between low sequence complexity and intrinsic disorder is heavily

dependent on LCD type. Again, these results are nearly identical to those obtained using a

non-redundant set of PDB proteins with<40% sequence homology (S3 Fig).

While these data are largely in agreement with the data in Fig 4 and S1 Movie, they high-

light an important limitation of grouping LCDs with no regard for composition. Parsing LCDs

based on the most-enriched amino acid resolves the issue of combining physically disparate

domains but does not specifically relate secondary structure tendencies to the degree of enrich-

ment for the indicated amino acid. For example, the class of N-rich LCDs include domains

that contain ~25–35% N up to 100% N. As indicated in Fig 1, sequences with lower percent

composition tend to be much more abundant within the PDB, indicating that these sequences

would disproportionately weight the secondary structure tendencies within each LCD cate-

gory. Furthermore, using a strict, arbitrarily-defined complexity threshold does not indicate

the degree of enrichment required to observe the initial development of secondary structure

preferences, or how these preferences change at different levels of enrichment. Therefore,

although traditional methods for defining LCDs may still be sufficient to yield important struc-

tural insights, further resolving LCDs based on degree of enrichment for the predominant

amino acid allows for elucidation of dose-dependent relationships between the amino acid

composition of LCDs and their corresponding structural tendencies.

Fig 5. LCD classes parsed by predominant amino acid exhibit unique structural tendency profiles. LCDs with Shannon entropy� 2.2 bits were parsed into amino acid

categories based on the most frequent amino acid within each peptide subsequence. Bars indicate the mean fraction of each secondary structure type for all subsequences

within each amino acid-specific LCD bin. For comparison, the mean fraction of each type of secondary structure for all subsequences across all proteins (“PDB” group)

and for all peptides qualifying as LCDs combined into a single category (“LCDs” group) are also shown.

https://doi.org/10.1371/journal.pcbi.1007487.g005
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Secondary structure tendencies among highly-enriched LCDs

systematically deviate from secondary structure propensity scales

A variety of statistical and experimental approaches have been used to develop α-helix and β-

sheet propensity scales for the 20 canonical amino acids. However, these scales are nearly

always developed using a set of structured proteins which are skewed toward high-complexity

sequences, yet LCDs often exhibit unusual biophysical behavior [24]. A simplified interpreta-

tion of the secondary structure propensity scales might suggest that as LCDs approach 100%

composition of a single type of amino acid (i.e. homopolymers), the α-helix and/or β-sheet

propensity of that domain as a whole should approach the exact propensity value for the pre-

dominant amino acid within the LCD. However, at present, it is unclear whether these scales

extrapolate well to LCDs.

To directly assess the applicability of current secondary structure propensity scales to LCDs

in structured proteins, we first obtained a set of highly-enriched LCDs for each amino acid

type by combining all previously-identified 12aa LCDs with�50% of the composition attribut-

able to that amino acid. Therefore, in principle, the predominant amino acid in each type of

LCD should exert the greatest influence on the overall secondary structure propensity of the

LCD. Additionally, all windows comprised of<50% that amino acid were pooled and retained

as a “non-LCD” set for comparison. Note that, in this context, non-LCDs simply refer to win-

dows having fewer than 6 residues (out of 12) of the amino acid under consideration (e.g. win-

dows with <6 alanines, when alanine is the amino acid under consideration). For each class of

highly-enriched LCDs (defined by the amino acid that constitutes�50% of each LCD

sequence in the class), the fraction of the defining residue annotated as α-helix or β-sheet (out

of the total frequency of the defining residue among that class of LCDs) was calculated sepa-

rately. For example, among A-rich LCDs, the fraction of alanine residues annotated as α-helix

and the fraction of alanine residues annotated as β-sheet were calculated. This procedure was

repeated for all classes of highly-enriched LCDs and the corresponding classes of non-LCD

regions, then plotted against each of seven α-helix propensity scales [31,35–38] and nine β-

sheet propensity scales [32,35,36,39–42] in a pairwise fashion (computational workflow

depicted in Fig 6; see Methods for additional details).

In general, a moderate correlation is observed between the LCD-specific fraction of residues

in α-helices or β-sheets and established α-helix or β-sheet scales (S4–S6 Figs). Correlation coef-

ficients for the highly-enriched LCDs when compared to α-helix scales range from 0.52 to

0.78, while correlation coefficients for the highly-enriched LCDs when compared to β-sheet

scales span a much broader range of 0.37 to 0.82 (S4–S6 Figs). By comparison, correlation

coefficients tend to be much higher when considering the fraction of each type of residue

among the corresponding non-LCD regions annotated as α-helix or β-sheet (S6–S8 Figs).

When sorted by average correlation coefficient across all pairwise comparisons, the non-LCD

category achieves the highest rank for both α-helices and β-sheets (S6 Fig), indicating that our

derived statistic is actually in better agreement overall with all of the established propensity

scales than any of the previously-derived scales. Conversely, the LCD category achieves the

absolute lowest rank among the α-helix propensity scales and the third-to-last rank among β-

sheet propensity scales (S6 Fig). Therefore, while established secondary structure propensity

scales work quite well for non-LCD regions, they consistently perform relatively poorly for

LCD regions.

For most classes of LCDs, the fraction of the defining residue in α-helices or β-sheets is

somewhat consistent with propensity values derived from α-helix and β-sheet scales respec-

tively. However, a detailed examination of the correlation plots indicates that LCDs enriched

in a few specific amino acids diverge in a consistent manner from each of the secondary

Atypical structural tendencies among LCDs in the PDB proteome
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Fig 6. Computational strategy for assessing the efficacy of established secondary structure propensity scales in predicting secondary structure tendencies among

LCDs and non-LCD regions. (A) For each amino acid, the PDB proteome is scanned using a 12aa window, and all windows are parsed into either a “highly-enriched

LCD” category (windows with�50% composition of that amino acid) or a “non-LCD” category (in this context, defined as windows with<50% composition of that

amino acid). For both categories, the fraction of that amino acid annotated as α-helix and the fraction annotated as β-sheet are calculated. This procedure is repeated for

all 20 canonical amino acids. (B) Then, pairwise regression analyses are performed between the fraction of residues in α-helices and each of the α-helix propensity scales.

To determine how well secondary structure propensity scales apply to LCD and non-LCD regions, regression analyses are performed separately for “highly-enriched

LCDs” and the “non-LCD” category. This process is repeated for the fraction of residues in β-sheets and each of the β-sheet propensity scales. In regression analyses,

missing amino acids indicate that the amino acid was removed from analyses either because few of the established secondary structure propensity scales scored that

amino acid or, in the case of highly-enriched LCDs, that few LCDs with�50% of that amino acid exist in the PDB (see Methods).

https://doi.org/10.1371/journal.pcbi.1007487.g006
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structure propensity scales (S4 and S5 Figs). In order to quantitatively assess these tendencies,

the vertical displacement from the line of best fit (i.e. the residual) was calculated for each

amino acid within each regression plot for the highly-enriched LCDs and the non-LCD

regions. The residual essentially represents both the direction and magnitude by which struc-

tural tendencies among LCDs tend to deviate from predicted values according to established

scales. With respect to α-helices, LCDs highly-enriched in L, F, I, A, or G tend to contain a

high fraction of that residue in α-helices compared to their predicted values based on regres-

sion with established scales (Fig 7A). Notably, the residual values for these classes of highly-

enriched LCDs are positive for all α-helix scales examined, indicating that the observed α-

helix content for the defining residue is unanimously higher than expected across all α-helix

scales. Conversely, LCDs enriched in K, H, E, S, R, D, Y, N, or T tend to have a low fraction of

the defining residue in α-helices relative to their expected values. For the β-sheet propensity

Fig 7. Observed secondary structure content for some LCDs systematically deviates from secondary structure propensity scales. For each set of highly-enriched

LCDs (defined as those for which a single amino acid comprises at least 50% of the overall composition), the fractions of the defining amino acid in α-helices or in β-

sheets were calculated separately and plotted against all secondary structure propensity scales in a pairwise fashion (see S4 and S5 Figs). For each amino acid, the residuals

were calculated from the regression line and indicated in the box plots for α-helix propensity scales (A) and β-sheet propensity scales (B). For comparison, the same

procedure was performed for each amino acid among non-LCD regions, and the resulting residuals are indicated in boxplots for α-helix propensity scales (C) and β-sheet

propensity scales (D).

https://doi.org/10.1371/journal.pcbi.1007487.g007
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scales, LCDs enriched in V, Y, or T tend to have a high fraction of that residue in β-sheets rela-

tive to their expected fraction of β-sheet content, while a cluster of certain LCDs (including F,

H, R, Q, L, K, and E type LCDs) typically have a low fraction of the defining residue in β-sheets

relative to predicted β-sheet propensity (Fig 7B). For many of the LCD classes, we observe a

dose-dependent relationship between the amino acid composition and the mean residual

value across all α-helix and β-sheet propensity scales (see S9 and S10 Figs and S3 File for exten-

sive analysis and associated supplemental discussion). Additionally, complete compositional

analysis of the highly-enriched LCDs indicates that the structural tendencies exhibited by each

class of LCDs are not substantially influenced by a latent preference for another amino acid as

the second most common residue (S11 Fig). Importantly, large residual values are not obtained

when regression analyses are performed for non-LCD regions (Fig 7C and 7D).

Overall, these data suggest that while secondary structure propensity scales perform reason-

ably well when assessing the structural tendencies of non-LCD regions, the structural tenden-

cies among specific classes of LCDs consistently deviate from existing α-helix and β-sheet

propensity scales.

Specialized LCDs preferentially occur within proteins that adopt particular

folds

While LCDs are more often intrinsically disordered relative to sequences of higher complexity,

it is clear that many of the specialized LCD types are capable of (if not prefer) adopting stable

secondary structures. It is possible that structured LCDs are favored within particular 3D pro-

tein fold families, effectively occupying a protein structure niche. To examine this possibility,

Pfam fold annotations mapped to PDB entries were obtained from the PDBfam database [43].

For each category of specialized LCD type (as defined by the modified SEG algorithm), the fre-

quency of each protein fold annotation associated with the specialized LCDs was compared to

the frequency of the same annotation within all PDB entries included in our non-redundant

PDB proteome using Fisher’s exact test with Holm-Šidák correction for multiple hypothesis

testing (see Methods section for additional details). For each type of LCD, the top 10 signifi-

cantly enriched Pfam annotations are indicated in Table 1 (complete statistical analyses are

provided in S4 File). For some well-characterized types of LCDs, enriched Pfam annotations

correspond to expected types of folds. For example, C residues are often involved in coordina-

tion of Fe-S clusters, and C-rich domains are associated with proteins containing Fe-S binding

domains. L-rich LCDs are associated with a number of distinct leucine-rich repeat domain

(LLRD) proteins. Collagen proteins are textbook examples of P-rich proteins, and proteins

with P-rich LCDs identified in our analyses are associated with proteins containing collagen

triple helix repeats.

However, aside from these well-known associations, our data implicate additional relation-

ships between LCDs and tertiary structure families. For example, both G-rich and V-rich

LCDs are significantly associated with zinc-binding dehydrogenases and alcohol dehydroge-

nase GroES-like domains. N-rich and I-rich domains are associated with clostridium neuro-

toxin proteins. W-rich domains are associated with multiple glycosyl hydrolase families, as

well as reverse transcriptase and RNaseH families. S-rich and T-rich LCDs are associated with

immunoglobin V-set domains and immunoglobulin C1-set domains; interestingly, immuno-

globulin V-set and immunoglobulin C1-set domains tended to be the most strongly underrep-

resented Pfam annotations among nearly all other types of LCDs (S4 File), indicating that

proteins containing these folds avoid most types of LCDs yet specifically allow for S- and T-

rich LCDs. In addition to the shared associations (either between or within a LCD type), many

of the enriched Pfam classes are uniquely related to a particular type of LCD. Collectively,
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Table 1. Top 10 significantly enriched Pfam annotations associated with each LCD category. For each LCD class, up to 10 significantly enriched (lnOR> 0.0) Pfam

annotations are indicated in ascending order according to Holm-Šidák corrected p-value.

LCD

Type

Annotation 1 Annotation 2 Annotation 3 Annotation 4 Annotation 5 Annotation 6 Annotation 7 Annotation 8 Annotation 9 Annotation 10

A-

rich

LCDs

Bacterial

extracellular solute-

binding protein

(lnOR = 0.75; Adj.

p = 0.0023)

C-

rich

LCDs

Metallothionein

(lnOR = 6.45; Adj.

p = 3.36e-13)

2Fe-2S iron-sulfur

cluster binding

domain

(lnOR = 4.23; Adj.

p = 1.93e-09)

Peptidase

family C1

propeptide

(lnOR = 5.73;

Adj. p = 1.06e-

07)

Spider insecticidal

peptide

(lnOR = 6.65; Adj.

p = 0.00031)

[2Fe-2S] binding

domain

(lnOR = 4.32;

Adj. p = 0.0005)

Papain family

cysteine protease

(lnOR = 3.39; Adj.

p = 0.0006)

Phlebovirus

glycoprotein G2

(lnOR = 5.67; Adj.

p = 0.0013)

Insulin-like growth

factor binding

protein (lnOR = 5.35;

Adj. p = 0.0022)

CO

dehydrogenase

flavoprotein C-

terminal domain

(lnOR = 3.96;

Adj. p = 0.027)

Aldehyde oxidase

and xanthine

dehydrogenase; a/

b hammerhead

domain

(lnOR = 3.92; Adj.

p = 0.028)

D-

rich

LCDs

Type III restriction

enzyme; res

subunit

(lnOR = 2.22; Adj.

p = 0.0021)

E-

rich

LCDs

Elongation factor

Tu domain 2

(lnOR = 1.18; Adj.

p = 0.0016)

NAD-dependent

DNA ligase

adenylation

domain

(lnOR = 2.19; Adj.

p = 0.047)

F-

rich

LCDs

Orotidine 5’-

phosphate

decarboxylase /

HUMPS family

(lnOR = 3.03; Adj.

p = 0.0013)

Influenza RNA-

dependent RNA

polymerase subunit

PB2 (lnOR = 3.62;

Adj. p = 0.019)

Eukaryotic

translation

initiation factor

3 subunit 8 N-

terminus

(lnOR = 4.7;

Adj. p = 0.044)

G-

rich

LCDs

Cyclophilin type

peptidyl-prolyl cis-

trans isomerase/

CLD (lnOR = 1.47;

Adj. p = 2.8e-06)

Berberine and

berberine like

(lnOR = 1.89; Adj.

p = 2.14e-05)

Pyridoxal-

phosphate

dependent

enzyme

(lnOR = 1.1;

Adj. p = 3.05e-

05)

Zinc-binding

dehydrogenase

(lnOR = 1.02; Adj.

p = 0.00022)

FtsZ family; C-

terminal domain

(lnOR = 1.95;

Adj. p = 0.0005)

Pyridine

nucleotide-

disulphide

oxidoreductase;

dimerisation

domain

(lnOR = 1.06; Adj.

p = 0.00077)

Alcohol

dehydrogenase

GroES-like

domain

(lnOR = 0.87; Adj.

p = 0.0017)

ROK family

(lnOR = 1.61; Adj.

p = 0.0027)

Pyridine

nucleotide-

disulphide

oxidoreductase

(lnOR = 0.77;

Adj. p = 0.012)

FAD binding

domain

(lnOR = 1.24; Adj.

p = 0.012)

H-

rich

LCDs

Domain of

unknown function

(DUF3869)

(lnOR = 6.02; Adj.

p = 0.0054)

Anaphase-

promoting

complex subunit 4

WD40 domain

(lnOR = 2.71; Adj.

p = 0.029)

I-rich

LCDs

Clostridium

neurotoxin;

Translocation

domain

(lnOR = 3.28; Adj.

p = 3.92e-07)

SAC3/GANP

family

(lnOR = 4.12; Adj.

p = 0.0025)

Clostridial

neurotoxin zinc

protease

(lnOR = 2.53;

Adj. p = 0.0027)

K-

rich

LCDs

Fes/CIP4; and

EFC/F-BAR

homology domain

(lnOR = 2.23; Adj.

p = 0.0014)

L-

rich

LCDs

Leucine rich repeat

N-terminal domain

(lnOR = 1.13; Adj.

p = 4.59e-06)

Leucine rich repeat

N-terminal domain

(lnOR = 1.52; Adj.

p = 0.0059)

Leucine rich

repeat C-

terminal

domain

(lnOR = 1.29;

Adj. p = 0.016)

M-

rich

LCDs

Signal peptide

binding domain

(lnOR = 4.64; Adj.

p = 0.0004)

Domain of

unknown function

(DUF305)

(lnOR = 5.4; Adj.

p = 0.0042)

Septin

(lnOR = 4.71;

Adj. p = 0.014)

NOPS (NUC059)

domain

(lnOR = 4.6; Adj.

p = 0.017)

Multicopper

oxidase

(lnOR = 3.17;

Adj. p = 0.025)

Multicopper

oxidase

(lnOR = 2.95; Adj.

p = 0.044)

N-

rich

LCDs

Bacterial adhesion/

invasion protein N

terminal

(lnOR = 3.25; Adj.

p = 2.92e-08)

Clostridium

neurotoxin;

Translocation

domain

(lnOR = 3.3; Adj.

p = 1.73e-05)

Clostridial

neurotoxin zinc

protease

(lnOR = 2.93;

Adj. p = 2.2e-

05)

Duffy binding

domain

(lnOR = 3.04; Adj.

p = 0.00065)

Pectate lyase

superfamily

protein

(lnOR = 2.69;

Adj. p = 0.00068)

Clostridium

neurotoxin; N-

terminal receptor

binding

(lnOR = 2.49; Adj.

p = 0.011)

Alpha-

2-macroglobulin

MG1 domain

(lnOR = 4.33; Adj.

p = 0.018)

Nontoxic

nonhaemagglutinin

C-terminal

(lnOR = 3.92; Adj.

p = 0.041)

(Continued)
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these results suggest that each type of LCD may fulfill a specialized structural role in particular

tertiary structure families.

Discussion

LCDs have gained recent attention for their importance in a number of molecular processes.

While LCDs in protein sequences have been studied for nearly two decades [22,25,44], a com-

plete understanding of the forms and functions of LCDs is still lacking. It is often asserted that

LCDs tend to be intrinsically disordered. On a statistical level this is true, since the majority of

LCDs are enriched in polar and charged amino acids (see Fig 2 and [14,15,18]) which, at high

local density, tend to promote disordered conformations [24]. However, this is an oversimpli-

fication on two levels: 1) LCDs are, in reality, a highly heterogeneous class of domains with dis-

tinct physicochemical properties based on LCD sequence and amino acid composition, which

results in diverging structural tendencies, and 2) traditional LCD methods do not distinguish

between LCDs with only mild compositional enrichment (~25–35% of a single type of amino

acid) and those with extreme compositional enrichment (e.g. true homopolymers). Therefore,

Table 1. (Continued)

LCD

Type

Annotation 1 Annotation 2 Annotation 3 Annotation 4 Annotation 5 Annotation 6 Annotation 7 Annotation 8 Annotation 9 Annotation 10

P-

rich

LCDs

Collagen triple

helix repeat (20

copies)

(lnOR = 1.88; Adj.

p = 0.0011)

Q-

rich

LCDs

Retroviral envelope

protein

(lnOR = 2.18; Adj.

p = 4.87e-07)

Cupin

(lnOR = 2.02; Adj.

p = 3.87e-05)

Fes/CIP4; and

EFC/F-BAR

homology

domain

(lnOR = 3.0;

Adj.

p = 0.00082)

STAT protein; all-

alpha domain

(lnOR = 4.05; Adj.

p = 0.0017)

XPC-binding

domain

(lnOR = 3.7; Adj.

p = 0.005)

Protease inhibitor/

seed storage/LTP

family

(lnOR = 2.58; Adj.

p = 0.037)

R-

rich

LCDs

Helicase conserved

C-terminal domain

(lnOR = 1.47; Adj.

p = 1.62e-08)

Hepatitis C virus

NS3 protease

(lnOR = 2.42; Adj.

p = 0.0025)

CXXC zinc

finger domain

(lnOR = 2.36;

Adj. p = 0.015)

Snurportin1

(lnOR = 3.52; Adj.

p = 0.036)

S-

rich

LCDs

Immunoglobulin

C1-set domain

(lnOR = 1.13; Adj.

p = 0.0)

Immunoglobulin

V-set domain

(lnOR = 0.94; Adj.

p = 0.0)

T-

rich

LCDs

Immunoglobulin

C1-set domain

(lnOR = 0.55; Adj.

p = 1.52e-07)

B domain

(lnOR = 2.69; Adj.

p = 5.25e-07)

Prion/Doppel

alpha-helical

domain

(lnOR = 2.9;

Adj. p = 2.86e-

06)

Immunoglobulin

V-set domain

(lnOR = 0.4; Adj.

p = 0.00061)

Gram-positive

pilin backbone

subunit 2; Cna-B-

like domain

(lnOR = 2.59;

Adj. p = 0.00074)

Gram-positive

pilin subunit D1;

N-terminal

(lnOR = 2.73; Adj.

p = 0.0017)

Urease alpha-

subunit; N-

terminal domain

(lnOR = 1.87; Adj.

p = 0.026)

Mur ligase family;

catalytic domain

(lnOR = 2.02; Adj.

p = 0.027)

Mur ligase

family; glutamate

ligase domain

(lnOR = 2.02;

Adj. p = 0.027)

Glycosyl

hydrolase family 7

(lnOR = 2.21; Adj.

p = 0.03)

V-

rich

LCDs

Alcohol

dehydrogenase

GroES-like domain

(lnOR = 1.41; Adj.

p = 5.44e-08)

Zinc-binding

dehydrogenase

(lnOR = 1.31; Adj.

p = 0.00016)

Subtilase family

(lnOR = 1.44;

Adj. p = 0.0034)

Zinc-binding

dehydrogenase

(lnOR = 1.52; Adj.

p = 0.011)

W-

rich

LCDs

Cellulase (glycosyl

hydrolase family 5)

(lnOR = 4.6; Adj.

p = 3.38e-06)

Reverse

transcriptase

connection domain

(lnOR = 6.66; Adj.

p = 7.48e-05)

Reverse

transcriptase

thumb domain

(lnOR = 6.48;

Adj. p = 9.57e-

05)

RNase H

(lnOR = 5.6; Adj.

p = 0.00045)

Reverse

transcriptase

(RNA-dependent

DNA

polymerase)

(lnOR = 5.6; Adj.

p = 0.00045)

Domain of

unknown function

(DUF4136)

(lnOR = 7.17; Adj.

p = 0.011)

Domain of

unknown function

(DUF1957)

(lnOR = 6.66; Adj.

p = 0.015)

Glycosyl hydrolase

family 57

(lnOR = 5.87; Adj.

p = 0.026)

Sortilin;

neurotensin

receptor 3;

(lnOR = 5.71;

Adj. p = 0.027)

BNR repeat-like

domain

(lnOR = 5.71; Adj.

p = 0.027)

Y-

rich

LCDs

Scavenger mRNA

decapping enzyme

C-term binding

(lnOR = 4.23; Adj.

p = 0.0039)

Scavenger mRNA

decapping enzyme

(DcpS) N-terminal

(lnOR = 4.23; Adj.

p = 0.0039)

Peptidase

family M3

(lnOR = 4.0;

Adj. p = 0.0068)

Phospholipase A2

(lnOR = 2.46; Adj.

p = 0.017)

Staphylococcus

aureus coagulase

(lnOR = 4.92;

Adj. p = 0.034)

WxcM-like; C-

terminal

(lnOR = 3.34; Adj.

p = 0.039)

https://doi.org/10.1371/journal.pcbi.1007487.t001
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both the nature and magnitude of amino acid enrichment within LCDs are effectively lost

when LCDs are treated as a single category.

In the present work, we advance the view that LCDs ought to be parsed into sub-types

based on the predominant amino acid enriched and its degree of enrichment within each

LCD. Analyses by Saqi [45] and Kumari et al. [3] indicate that LCDs, when treated as a single

class, typically adopt α-helical or coiled conformations in structured proteins. Furthermore,

both studies showed that the amino acid compositions of these LCDs differ from the composi-

tions of LCDs in naturally occurring proteins in general protein sequence databases. These

observations provided important broad statistics with respect to LCDs as a single class and

highlighted the fact that LCDs are not universally disordered. However, they did not specifi-

cally dissect the relationships between the compositions of LCDs and their corresponding

structural tendencies. Here, we observe that although many types of LCDs are indeed predom-

inantly disordered, a number of LCD sub-classes exhibit substantial tendencies to form struc-

tured conformations that are strongly dependent upon the predominant amino acid

comprising the LCD. Furthermore, at milder levels of enrichment, even LCD classes typically

associated with disorder may retain at least a minor tendency to form ordered conformations

(e.g. Q-rich, T-rich, E-rich, R-rich, and K-rich LCDs). For all LCD types, structural tendencies

vary as a function of amino acid composition and often change in a dose-dependent manner

upon progressive enrichment.

With respect to tertiary structure, certain types of LCDs were preferentially associated with

particular protein fold families, suggesting that LCDs may fulfill specific structural roles in

some protein folds. Although we were able to map Pfam annotations to each PDB chain, Pfam

annotations could not be mapped to precise locations within PDB chain sequences. Therefore,

Pfam associations with specific types of LCDs can be interpreted in multiple ways. For exam-

ple, it is possible that LCDs tend to lie directly within associated Pfam-annotated regions, or

that LCDs lying outside of Pfam-annotated regions interact with or dock on the domain.

When compared with traditional secondary structure propensity scales, the average second-

ary structure content among LCD subtypes exhibited only a moderate or weak correlation.

Most secondary structure scales are based predominantly on experiments or statistics that are

heavily or exclusively reliant upon observations among high-complexity sequences. Our obser-

vations suggest that traditional scales may only weakly capture structural tendencies at the

more “unusual” compositional extremes that define LCDs. Perhaps the broader principle

(which we are certainly not the first to appreciate) is that secondary structure scales are not

static: secondary structure propensities for each of the amino acids, though often represented

by a single value, likely change based on local amino acid sequence and composition. By defi-

nition, LCDs provide an unusual local environment and are, therefore, no exception to this

principle.

Our study also provides ample opportunity for follow-up analyses examining specific

aspects of the data in greater detail. While parsing LCDs by amino acid composition enhances

the ability to resolve differences between these classes, there may yet exist sub-classes of LCDs

within each category which exhibit unique biophysical behavior. For example, while highly

charged domains tend to be intrinsically disordered [24], specific patterning of oppositely

charged residues can, in some cases, favor alpha helical conformations [46]. Indeed, when we

re-analyzed the 90% non-redundant PDB while precluding all windows in which oppositely

charged residues co-occur, we observe a slight downward shift in the alpha helix curves for all

of the main charged residues (S12 Fig; see Methods for details), suggesting that charged single

alpha helices may contribute (albeit only slightly) to the structural tendencies of these classes

of LCDs. Therefore, while the analyses presented in this work lay a necessary foundation for
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studying the general structural behavior of LCDs, additional layers of detail may aid in the

characterization of nuanced sub-classes of LCDs.

It is important to note that, although LCDs are abundant within structured proteins, these

LCDs likely constitute only a small fraction of all LCDs found in native proteins (refer back to

Figs 1 and 2). The secondary structure content of LCDs observed in structured proteins might

necessarily be skewed toward structured conformations and, therefore, may not reflect the ten-

dencies of each type of LCD globally. Furthermore, it is conceivable that structural studies are

biased at the experimental level: 1) LCDs might in some cases be eliminated a priori from pro-

tein sequences due to the pervasive perception that they tend to be disordered, 2) solution con-

ditions used in structural studies might favor or disfavor ordered conformations for certain

types of LCDs, and 3) many types of LCDs may adopt structures contingent upon interaction

with specific binding partners. Therefore, at present, it is difficult to evaluate whether incorpo-

rating composition-dependence into secondary structure propensity scales would improve de
novo predictions of secondary structure based on sequence alone.

In conclusion, our results highlight the abundance of LCDs within structured proteins, the

unique structural tendencies of LCDs, and the differences in structural tendencies across

LCDs of distinct types within the PDB proteome.

Methods

Data acquisition and processing

Protein sequences as well as corresponding secondary structure and intrinsic disorder annota-

tions for all protein chains found in the Protein Data Bank (PDB) were downloaded from

https://www.rcsb.org/pdb/static.do?p=download/http/index.html on 6/19/2019. To reduce

bias due to redundancy in the PDB, a set of PDB IDs clustered based on a 90% homology

threshold were obtained from http://www.rcsb.org/pages/download/ftp on 6/19/2019 (addi-

tional follow-up analyses were performed on a set of PDB sequences with<40% homology,

downloaded on 11/8/19). For each cluster, the first PDB ID (which is pre-sorted based on the

quality of the structure deposited in the PDB) was retained in the “non-redundant” set. To fur-

ther eliminate LCD biases due to N- or C-terminal tags (e.g. HA-tags, polyHis tags, etc.), tags

were trimmed from PDB chain sequences if the tag sequence overlapped with the first 20 or

final 20 residues within the sequence (see S5 File for full list of tags and corresponding tag

sequences included in search criteria). The human and yeast reference proteomes (Uniprot

IDs UP000005640 and UP000002311, respectively) were downloaded from https://www.

uniprot.org/ on 10/5/2019.

Calculation of Shannon entropy

Shannon entropy, which is implemented in the SEG algorithm to identify LCDs [25], was cal-

culated as indicated in [18]. Briefly, the Shannon entropy corresponding to each 12aa subse-

quence was calculated as:

SE ¼ �
XN¼20

i¼1

ni

L
log2

ni

L

� �
ð1Þ

where N represents the size of the residue alphabet (N = 20, for the canonical amino acids), ni
is the number of occurrences of the ith residue within the given subsequence of length L = 12.

LCDs (defined as having SE� 2.2 bits) were then assigned to a LCD category based on the

most frequent amino acid within the subsequence (i.e. A-rich LCDs, C-rich LCDs, etc.).
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Local amino acid composition algorithm

To examine the distribution of protein segments as a function of composition and window

size for the entire non-redundant PDB, all PDB chain protein sequences were exhaustively

scanned using window sizes ranging from 10 amino acids to 100 amino acids. For each amino

acid, the percent composition for each subsequence was calculated and binned based on the

composition for the amino acid of interest. All subsequences containing a non-canonical

amino acid were excluded from analyses.

To examine relationships between amino acid composition and secondary structure ten-

dencies, a 12aa scanning window (which corresponds to the default window size implemented

in the SEG algorithm [25,44]) was used to exhaustively scan each PDB chain sequence. The

mean fraction of each secondary structure type was calculated independently for each combi-

nation of amino acid and residue count (i.e. composition). Within each dataset corresponding

to one amino acid, these mean fraction values for each secondary structure type were linearly

interpolated and plotted as a dynamic bar chart to generate S1 Movie. Additionally, to com-

pare with LCDs defined using traditional methods, the mean fraction of each secondary struc-

ture type was calculated for each class of LCDs defined by Shannon entropy, as indicated

above.

Regression analyses comparing observed secondary structure content to

established secondary structure propensity scales

For each set of highly-enriched LCDs analyzed, the fraction of the defining amino acid (i.e. the

amino acid constituting�50% of each LCD) annotated as α-helix or β-sheet was calculated,

and those values were plotted in a pairwise fashion against each of the α-helix or β-sheet pro-

pensity scales, respectively. The same procedure was performed for non-LCD regions as well:

specifically, for each amino acid, the fraction of residues in α-helices or β-sheets (and not

within a highly-enriched LCD of that amino acid type) was calculated and similarly plotted

against the α-helix or β-sheet propensity scales, respectively. Ordinary least squares regressions

were performed using the Python statsmodels package. Residual values were calculated from

the resulting regression lines and the associated fraction of residues in α-helices or β-sheets for

each amino acid among LCDs and among non-LCD regions. The absolute value of the correla-

tion coefficients for all pairwise comparisons between secondary structure propensity scales,

LCD regions, and non-LCD regions (S6 Fig) were calculated using the SciPy (Python package)

pearsonr correlation function. Correlation matrices in S6 Fig were sorted based on average

correlation coefficient. Since proline is often an outlier or absent altogether among established

secondary structure propensity scales, it was excluded from all regression analyses (as was gly-

cine specifically from the Kim & Berg [42] β-sheet propensity scale, as determined by examina-

tion of initial regression plots of the non-LCD-derived statistics). Additionally, LCD classes

with fewer than 50 total counts of the defining amino acid were excluded from analyses due to

small sample sizes.

Statistical analysis of Pfam annotations associated with LCDs

Pfam protein fold annotations were obtained from the PDBfam database ([43]; http://

dunbrack2.fccc.edu/protcid/pdbfam/Download.aspx) on 6/25/2019. For each LCD type, Pfam

annotations were mapped to each PDB chain in the LCD category. The frequency of each

Pfam annotation found in each LCD category was then compared to the overall frequency of

the Pfam annotation within the non-redundant PDB proteome using a two-sided Fisher’s

exact test. Adjusted p-values were calculated within each LCD category using the Holm-Šidák
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method (implemented in the statsmodels package available in Python) to account for multiple

hypothesis testing. Additionally, to evaluate the degree of enrichment or depletion of each

Pfam annotation associated with LCDs, the odds ratio was calculated as:

ORA ¼
fLCD

1 � fLCD

� �

=
fPDB

1 � fPDB

� �

ð2Þ

where fLCD represents the frequency of the Pfam annotation among a given class of LCDs, and

fPDB represents the frequency of the Pfam annotation among all chains in the non-redundant

PDB proteome.

Supporting information

S1 Movie. Progressive development of secondary structure tendencies as a function of

compositional enrichment. For each amino acid, the mean fraction values corresponding to

each type of secondary structure were linearly interpolated across all residue count bins. Each

stacked bar represents the mean secondary structure content for each secondary structure type

corresponding to all peptides with the indicated amino acid composition. For example, in the

first frame (titled “0 Residues of Interest”), the “A” stacked bar represents the mean secondary

structure content corresponding to all peptides with 0 alanine residues (note that at this stage,

all stacked bars are quite similar and effectively represent rough approximations of the mean

secondary structure profile for the entire PDB proteome). As the movie progresses, the stacked

bars change to reflect the secondary structure content as the composition increases for each of

the amino acids on the x-axis. To continue the example, “1 Residue of Interest” indicates the

secondary structure profile corresponding to all peptides with 1 alanine for the “A” stacked

bar, “2 Residues of Interest” represents the secondary structure profile corresponding to all

peptides with 2 alanines, etc. Short interframe intervals are indicative of interpolated values,

whereas longer pauses occur as each integer value for “X Residues of Interest” is reached.

(MP4)

S1 Fig. Sample sizes vary as a function of amino acid composition. For each amino acid, the

bar plot indicates the sample sizes in each residue count bin corresponding to Fig 4.

(TIF)

S2 Fig. Secondary structure tendencies as a function of composition among a non-redun-

dant PDB dataset with <40% homology are nearly identical to those observed with a 90%

homology threshold. A set of PDB sequences with<40% sequence homology was analyzed

with the same computational procedure (Fig 3) applied to the<90% homology PDB dataset.

Compare with Fig 4 in the main text. It is worth noting that the PDB is updated regularly, and

archived versions of the 40% non-redundant PDB are not available: therefore, the 40% non-

redundant PDB proteome contains the structures (and sequences) of new proteins solved

since our initial download of the 90% non-redundant PDB proteome. The full list of PDB

chain IDs included in the 40% non-redundant PDB proteome is contained in S2 File.

(TIF)

S3 Fig. Structural tendency profiles observed for classically-defined LCDs are not substan-

tially altered when using a lower sequence homology threshold (40%). Classically-defined

LCDs were identified among the 40% non-redundant PDB dataset in the same manner as

described for Fig 5.

(TIF)
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S4 Fig. Observed fraction of the LCD-defining residue in α-helices among highly-enriched

LCDs exhibits a moderate correlation with α-helix propensity scales. Scatter plots indicate

all pairwise comparisons between the fraction of the LCD-defining residue in α-helices among

each type of highly-enriched LCD and values from established α-helix propensity scales. Each

shaded band indicates the 95% confidence interval around the regression line.

(TIF)

S5 Fig. Observed fraction of the LCD-defining residue in β-sheets among highly-enriched

LCDs exhibits a moderate-to-weak correlation with β-sheet propensity scales. Scatter plots

indicate all pairwise comparisons between the fraction of the LCD-defining residue in β-sheets

among each type of highly-enriched LCD and values from established β-sheet propensity

scales. Each shaded band indicates the 95% confidence interval around the regression line.

(TIF)

S6 Fig. α-helix and β-sheet content among highly-enriched LCDs diverges from secondary

structure propensity scales. All pairwise comparisons between secondary structure propen-

sity scales, as well as the fraction of each amino acid corresponding to each secondary structure

type among highly-enriched LCDs and non-LCD regions, were performed for α-helix (A) and

β-sheet (B) propensity scales (see also S4 and S5 Figs for each pairwise correlation plot). Heat-

map intensities and corresponding values indicate the absolute value of the Pearson correla-

tion coefficient for each comparison. To indicate general ranking with respect to the overall

degree of correlation with all other α-helix or β-sheet propensity scales, the heatmaps were

pre-sorted based on the average absolute correlation coefficient in descending order (top-to-

bottom, and left-to-right).

(TIF)

S7 Fig. Observed fraction of residues among non-LCDs in α-helices exhibits a strong corre-

lation with α-helix propensity scales. Scatter plots indicate all pairwise comparisons between

the fraction of each residue in α-helices among the complementary set of non-LCD regions for

each class of LCD and values from established α-helix propensity scales. Each shaded band

indicates the 95% confidence interval around the regression line.

(TIF)

S8 Fig. Observed fraction of residues among non-LCDs in β-sheets exhibits a strong corre-

lation with β-sheet propensity scales. Scatter plots indicate all pairwise comparisons between

the fraction of each residue in β-sheets among the complementary set of non-LCD regions for

each class of LCD and values from established β-sheet propensity scales. Each shaded band

indicates the 95% confidence interval around the regression line.

(TIF)

S9 Fig. Dose-dependent relationships between amino acid composition and divergence

from α-helix propensity scales. For each residue count bin, the fraction of the LCD-defining

amino acid in α-helices was calculated separately for each LCD class. Pairwise regression anal-

yses were performed between each α-helix propensity scale and the fraction of α-helical resi-

dues among highly-enriched LCDs. From the regression analyses, the residual values for each

LCD class (i.e. each amino acid) were averaged across all α-helix propensity scales. This pro-

cess was repeated independently for each residue count bin, and the resulting mean residual

values are indicated in the figure above. Additionally, the size of each point (as well as the

opacity of each point and the opacity of the preceding line segment) reflects the sample size for

each residue count bin for each LCD class (i.e. the number of protein regions that were parsed
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into each bin based on the composition of the amino acid indicated in each subplot title).

(TIF)

S10 Fig. Dose-dependent relationships between amino acid composition and divergence

from β-sheet propensity scales. Mean residual values were calculated from pairwise regres-

sion analyses between observed fraction of LCD-defining residues in β-sheets among highly-

enriched LCDs and each of the β-sheet propensity scales. Regression analyses, calculation of

the residuals, and plotting were performed as indicated in the S9 Fig legend.

(TIF)

S11 Fig. Highly-enriched LCDs do not exhibit strong subsidiary preferences for other

amino acids. Heatmap indicating the average frequency of all residues calculated from the

highly-enriched LCD sequences within each LCD category.

(TIF)

S12 Fig. α-helix peaks are only mildly affected when precluding the co-occurrence of oppo-

sitely charged residues. Secondary structure proportions were re-calculated for each of the

main charged residues while eliminating all windows that contain an oppositely charged resi-

due (see Methods). In all cases, the α-helix peaks exhibit a slight downward shift (compare

with Fig 4), suggesting that charged single α-helices constitute only a minor contribution to

the overall shape and magnitude of the α-helix curves for charged residues.

(TIF)

S1 File. PDB chain IDs included in the 90% non-redundant PDB dataset. The original set of

non-redundant PDB sequences (at the 90% sequence identity level) was further filtered to

exclude all PDB chains associated with membrane proteins (as indicated in the Methods sec-

tion). S1 File contains the final set of PDB chain IDs used for all analyses pertaining to the 90%

non-redundant dataset.

(TXT)

S2 File. PDB chain IDs included in the 40% non-redundant PDB dataset. Membrane pro-

teins were filtered from the downloaded set of non-redundant PDB sequences (at the 40%

sequence identity level). The final set of PDB chain IDs used for all analyses pertaining to the

40% non-redundant dataset are contained in S2 File.

(TXT)

S3 File. Supplemental discussion for S9 and S10 Figs.

(DOCX)

S4 File. Statistical analyses of Pfam annotations associated with each type of LCD. All Pfam

annotations associated with each LCD category (separate tabs) are indicated, along with their

frequencies among the LCD category and PDB proteome, their degrees of enrichment/deple-

tion (lnOR), and their associated probability statistics (p-value and Holm-Šidák corrected p-

value).

(XLSX)

S5 File. Common protein expression/purification tags trimmed from protein termini

prior to analyses.

(XLSX)
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