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Abstract

Proteins with low-complexity domains continue to emerge as key players in both normal and

pathological cellular processes. Although low-complexity domains are often grouped into a

single class, individual low-complexity domains can differ substantially with respect to

amino acid composition. These differences may strongly influence the physical properties,

cellular regulation, and molecular functions of low-complexity domains. Therefore, we devel-

oped a bioinformatic approach to explore relationships between amino acid composition,

protein metabolism, and protein function. We find that local compositional enrichment within

protein sequences is associated with differences in translation efficiency, abundance, half-

life, protein-protein interaction promiscuity, subcellular localization, and molecular functions

of proteins on a proteome-wide scale. However, local enrichment of related amino acids is

sometimes associated with opposite effects on protein regulation and function, highlighting

the importance of distinguishing between different types of low-complexity domains. Fur-

thermore, many of these effects are discernible at amino acid compositions below those

required for classification as low-complexity or statistically-biased by traditional methods

and in the absence of homopolymeric amino acid repeats, indicating that thresholds

employed by classical methods may not reflect biologically relevant criteria. Application of

our analyses to composition-driven processes, such as the formation of membraneless

organelles, reveals distinct composition profiles even for closely related organelles. Collec-

tively, these results provide a unique perspective and detailed insights into relationships

between amino acid composition, protein metabolism, and protein functions.

Author summary

Low-complexity domains in protein sequences are regions that are composed of only a

few amino acids in the protein “alphabet”. These domains often have unique chemical

properties and play important biological roles in both normal and disease-related pro-

cesses. While a number of approaches have been developed to define low-complexity

domains, these methods each possess conceptual limitations. Therefore, we developed a
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complementary approach that focuses on local amino acid composition (i.e. the amino

acid composition within small regions of proteins). We find that high local composition

of individual amino acids is associated with pervasive effects on protein metabolism, sub-

cellular localization, and molecular function on a proteome-wide scale. Importantly, the

nature of the effects depend on the type of amino acid enriched within the examined

domains, and are observable in the absence of classically-defined low-complexity (and

related) domains. Furthermore, we define the compositions of proteins involved in the

formation of membraneless, protein-rich organelles such as stress granules and P-bodies.

Our results provide a coherent view and unprecedented resolution of the effects of local

amino acid enrichment on protein biology.

Introduction

Low-complexity domains (LCDs) in proteins are regions enriched in only a subset of possible

amino acids. LCDs can be composed of homopolymeric repeats of a single amino acid, short

tandem repeats consisting of only a few different amino acids, or aperiodic stretches with little

amino acid diversity [1]. Proteins containing LCDs are relatively common among organisms

from all domains of life, and are particularly common among eukaryotes [2–4]. For example,

approximately 70% of genes in the Saccharomyces cerevisiae genome possess at least one classi-

cally-defined LCD [3]. Furthermore, the total number of LCDs far exceeds the total number of

yeast genes (~2-fold more LCDs than genes), indicating that many genes contain multiple dis-

tinct LCDs.

Various methods have been developed to assess biopolymer sequence complexity [1,5–9].

One of the most commonly employed methods to define LCDs is the SEG algorithm [1],

which scans protein (or nucleic acid) sequences using a short sliding window, and calculates

the local Shannon entropy for each window (see [10] for a detailed description). Subsequences

with a Shannon entropy value below a pre-determined “trigger” threshold are classified as

LCDs. LCD boundaries are later extended and refined by merging overlapping LCDs and cal-

culating combinatorial sequence probabilities. Another metric commonly used to assess rela-

tive sequence complexity is compositional bias, which involves determining the statistical

probability of a sequence given whole-proteome frequencies of the individual amino acids

[11,12]. These approaches (or closely-related approaches) have been used extensively to exam-

ine LCDs on a proteome-wide scale [1,3,12–17].

LCD-containing proteins have been implicated in a variety of normal and pathological cel-

lular processes. For example, Q/N-rich yeast proteins often play a role in transcription regula-

tion, endocytosis, and cell cycle regulation, among other functions [11,18]. Many proteins

containing Q/N-rich LCDs, or LCDs of related types (Q/N/G/S/Y-rich LCDs) have been

linked to prion or prion-related processes [11,18–21]. Additionally, many prion-like LCDs,

which are often composed of short tandem repeats of low-complexity [22], have been linked to

stress granules and processing bodies (P-bodies) in eukaryotes (see [23] for recent review).

The amino acid composition of these LCDs confers unusual biophysical properties to these

domains [24], which likely relates to their unique behavior in vitro and in vivo [25–30]. How-

ever, these unusual characteristics appear to be inseparably linked to pathological processes as

well. For example, genetic expansion of regions encoding homopolymeric glutamine repeats

(the simplest type of LCD) in various proteins can lead to a multitude of neurodegenerative

disorders, including Huntington’s Disease and spinocerebellar ataxias (for review, see [31]).

Furthermore, mutations in the LCDs of stress granule proteins can alter stress granule
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dynamics and lead to degenerative diseases [26,28,30,32,33]. The importance of LCDs extends

well beyond Q/N-rich LCDs, as LCDs of other compositions have also been linked to normal

and pathological cellular processes [12,14,17,34,35].

Although LCDs can clearly impact protein regulation and function, a number of challenges

have thus far limited a proteome-scale understanding of these relationships. One major chal-

lenge lies in defining LCDs. Current approaches use statistically-defined thresholds for

sequence complexity or compositional bias [1,11], or arbitrarily-chosen repeat lengths for pro-

teins with homopolymeric repeats [34–41]. Although these definitions of LCDs, composition-

ally biased sequences (herein referred to as “statistically-biased domains” to avoid later

confusion), or homopolymeric repeats have facilitated important discoveries, the biological

relevance of these thresholds has not been rigorously examined. Furthermore, these proteins

are often grouped into a single class even though their compositions, and therefore physical

properties, can differ dramatically (a limitation that was appreciated in a recent review [42]).

To address these limitations, we have developed an alternative approach to infer relation-

ships between amino acid composition and protein metabolism and function. By focusing on

amino acid composition, which is the fundamental feature underlying both sequence complex-

ity and statistical amino acid bias, we examined links between local compositional enrichment

and various aspects of protein regulation and function without appealing to pre-defined

sequence complexity or statistical bias thresholds. We find that local compositional enrich-

ment correlates with differences in nearly all core aspects of a protein’s tenure in the cell,

including translation efficiency, abundance, half-life, protein-protein interaction promiscuity,

subcellular localization, and function. However, enrichment for different amino acids is asso-

ciated with different effects, even for residues often grouped based on physicochemical similar-

ities, highlighting the importance of distinguishing LCDs of different types. These

relationships are discernible at compositions below those required for classification as low-

complexity or statistically-biased, suggesting that the thresholds in traditional methods may

not be biologically optimized. Finally, analysis of experimentally-defined protein components

of stress granules and P-bodies reveals both shared and distinct compositional features associ-

ated with these organelles.

Results

Systematic survey of local amino acid composition

Fundamentally, both sequence complexity and statistical amino acid bias are indirect measures

of local amino acid composition. Since composition is a more direct indication of overall pro-

tein domain properties, we sought to examine whether composition alone could be used to

infer residue-specific relationships between local amino acid composition and protein regula-

tion and function. We first developed an algorithm to partition the yeast proteome on the

basis of maximum local composition for each amino acid using a series of scanning window

sizes (Fig 1; see Methods). For all amino acids, the majority of proteins are partitioned into

composition bins of� 25% (Fig 2 and S1 Table). However, the number of proteins achieving

higher local compositions, indicated by a right-hand shoulder or tail in the distribution, were

strongly residue-dependent. For example, proteins containing local enrichment of highly

hydrophobic residues (I, L, M, and V), aromatic residues (F, W, and Y), or cysteine are almost

exclusively limited to composition bins of� 45% for the smallest window size, whereas alanine

and proline distributions extend to slightly higher composition ranges (up to 60–65%). Pro-

teins containing local enrichment of polar (G, N, Q, S, and T) or charged (D, E, and K) resi-

dues in composition bins of� 40% are relatively common even among larger window sizes

(albeit to differing degrees), whereas histidine and arginine rich regions are relatively rare.

Residue-dependent effects of amino acid composition on protein biology
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These data indicate that relatively high local enrichment is tolerated for some amino acids,

while compositional enrichment for other amino acids appears to be restricted in yeast.

Residue-specific relationships between local compositional enrichment and

protein metabolism

While the origins and evolution of LCDs have been extensively explored [3,4,14,38,43,44], the

regulation and metabolism of LCD-containing proteins remain poorly-understood. Proteins

with intrinsically disordered segments, which often qualify as LCDs [45,46], have been associ-

ated with lower protein half-lives [47]. However, not all intrinsically disordered regions lead to

Fig 1. Depiction of proteome sorting on the basis of maximum local composition. (A) For each amino acid and window size

combination, each yeast protein is sorted into percent composition bins based on the maximum local composition of the amino acid

within the given sliding window size. This effectively sorts the yeast proteome 200 distinct ways (20 amino acids x 10 different sliding

window sizes). (B) Visual representation of proteins sorted based on maximum local aspartic acid composition with a 20 amino acid

sliding window.

https://doi.org/10.1371/journal.pcbi.1006256.g001
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short protein half-lives, and not all LCDs are intrinsically disordered [15]. Additionally, pro-

teins with homopolymeric repeats, when considered as a single class, are associated with lower

Fig 2. Distribution of the yeast proteome based on maximum local amino acid composition. The number of proteins partitioned into each

window size/percent composition bin for each of the 20 canonical amino acids are plotted as a function of maximum local composition for

each window size. Scatter points are connected by line segments for visual clarity only.

https://doi.org/10.1371/journal.pcbi.1006256.g002
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translation efficiency, lower protein abundance, and lower protein half-life compared to pro-

teins lacking homopolymeric repeats [37]. However, the regulation and structural properties

of proteins with LCDs or homopolymeric repeats is likely strongly dependent on the predomi-

nant amino acids within the domain of interest [42].

To explore relationships between local compositional enrichment and protein metabolism,

we first examined possible links between local compositional enrichment and protein abun-

dance. Recent advances in proteomic methods have facilitated remarkable proteome coverage

for both protein abundance [48] and protein half-life [49] measurements in yeast. At each win-

dow size/percent composition bin, the distribution of protein abundance values for all proteins

partitioned into that bin was compared to the protein abundance distribution for all other

yeast proteins (Mann-Whitney U test). Transitions from significantly lower median abun-

dance to significantly higher median abundance or vice versa are observed upon enrichment

for many amino acids individually (Fig 3). However, the direction of the trends upon progres-

sive compositional enrichment are dependent on amino acid type. For the majority of amino

acids (C, D, F, H, I, L, M, N, P, Q, R, S, T, W, or Y) compositional enrichment is associated

with lower median protein abundance. However, compositional enrichment of A, G, or V is

associated with higher median protein abundance. Two very similar transitions are observed

for both E-rich and K-rich sequences: as compositional enrichment increases, the relative

median protein abundance transitions from high to low, then back to high. Collectively, these

trends are consistent with, yet much stronger than, previously observed correlations between

protein abundance and whole-protein composition [50,51]. This suggests that the trends

observed previously may actually reflect the effects of local compositional enrichment, which

would increase apparent whole-protein composition for the enriched amino acid yet be damp-

ened by confounding effects from the remainder of the protein sequence.

Similar trends are observed when compositional enrichment is compared to protein half-

lives (Fig 4). Compositional enrichment for the majority of amino acids (C, H, K, M, N, P, S,

or T) is associated with lower protein half-life, whereas enrichment for A, G, I, or V is associ-

ated with higher protein half-life. Enrichment for F leads to an initial transition from lower to

higher half-lives, while further enrichment leads to a transition back to lower half-lives. It is

worth noting that similar trends were observed in an independent protein half-life dataset

when the proteins were analyzed based on whole-protein amino acid composition [52], sug-

gesting that maximum local composition is sufficient to detect associations between amino

acid composition and half-life. Although for many amino acids the trends are readily apparent,

the strength of the association between compositional enrichment and protein half-life appears

to be slightly weaker than the association between compositional enrichment and protein

abundance. This is likely due, at least in part, to limited proteome coverage (relative to the pro-

tein abundance dataset). However, a recent study also suggested that protein half-life is

strongly affected by factors other than sequence characteristics [53], which would likely further

dampen relationships between compositional enrichment and protein half-life. Finally, protein

half-life is generally less-conserved than protein abundance [54], perhaps suggesting that spe-

cific relationships between conserved sequence features and protein half-life may not be par-

ticularly strong. Therefore, it is rather surprising that we observe the indicated trends in spite

of these limitations, and could suggest that half-life is more strongly influenced by local com-

position than particular primary sequence motifs.

Direct measurement of protein synthesis rates is more experimentally challenging. Conse-

quently, proteome-wide coverage for experimentally-derived translation efficiency remains

substantially lower than coverage for protein abundance and half-life. The normalized transla-

tion efficiency (nTE), a reported metric of translation elongation efficiency [55], is based on

codon usage frequencies and tRNA gene copy numbers, allowing for calculation of translation

Residue-dependent effects of amino acid composition on protein biology
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Fig 3. Maximum local amino acid composition is associated with residue-specific differences in protein

abundance. For each amino acid, protein abundance values corresponding to proteins partitioned into a given

window size and percent composition bin were compared to values for all proteins of length� the corresponding

window size that were excluded from the bin. For this figure and related subsequent figures, red and blue points

indicate bins for which the distribution of protein abundance values differ significantly (Bonferroni-corrected

p� 0.05) from those of excluded proteins: red points indicate bins with a lower median value relative to that of

excluded proteins, whereas blue points indicate bins with a higher relative median value. Grey points indicate

comparisons lacking statistical significance. Individual points are scaled within each subplot to reflect the sample sizes

of proteins contained within each bin.

https://doi.org/10.1371/journal.pcbi.1006256.g003
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Fig 4. Maximum local amino acid composition is associated with residue-specific differences in protein half-life.

For each amino acid, protein half-life values corresponding to proteins partitioned into a given window size and

percent composition bin were compared to half-life values for all proteins of length� the corresponding window size

that were excluded from the bin.

https://doi.org/10.1371/journal.pcbi.1006256.g004
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efficiency for the entire proteome. Therefore, we first examined relationships between local

compositional enrichment and calculated translation elongation efficiency. nTEs were calcu-

lated for whole-protein sequences using the corresponding coding region on mRNA tran-

scripts (see Methods). Translation efficiency is strongly dependent on the locally-enriched

amino acid (Fig 5). For the majority of amino acids (C, D, E, F, H, I, K, L, M, N, P, Q, R, or Y),

local enrichment is associated with significantly lower median nTEs suggesting that, as a single

class, proteins with local compositional enrichment tend to be translated relatively ineffi-

ciently. Proteins with domains enriched in S, T, or W are generally associated with signifi-

cantly lower median nTEs, although proteins with very high S, T, or W enrichment are

associated with significantly higher median nTEs. However, proteins with domains enriched

in A, G, or V residues are consistently associated with significantly higher median nTEs, sug-

gesting that these proteins may be translated relatively efficiently. Remarkably, nearly identical

trends are observed between local compositional enrichment and the experimentally-derived

protein synthesis rates reported for a limited proteome (S1 Fig) despite a substantial reduction

in sample size (n = 1115; [56]), suggesting that nTE can serve as a good surrogate for overall

protein synthesis efficiency. Collectively, these results indicate that local amino acid enrich-

ment is associated with differences in protein production rates in a composition-dependent

manner.

For most amino acids, we noticed a remarkable correspondence in the trends for transla-

tion efficiency, protein abundance, and protein half-life, despite the fact that these values are

derived from entirely different methods and experiments. For example, local enrichment for

many amino acid types is associated with low nTE values, low protein abundance, and low

protein half-life (Table 1). While translation efficiency and protein degradation rate are largely

functionally independent in cells, protein abundance depends, at least in part, on both transla-

tion efficiency and protein half-life [49]. This may suggest that protein abundance for these

proteins is limited in cells by a combination of poor translation efficiency and rapid degrada-

tion rate. In contrast, local enrichment for some amino acids is associated with high protein

abundance also tended to have higher nTE values and higher half-lives, perhaps suggesting

that high protein abundance for these proteins is achieved by a combination of efficient trans-

lation and poor degradation.

Nearly-identical, residue-specific relationships between local

compositional enrichment and protein abundance are observed in C.

elegans
As a model eukaryotic organism, S. cerevisiae provides a number of important advantages in

proteome-scale studies relating protein sequence to protein metabolism and function. In addi-

tion to the unmatched proteome coverage in protein abundance and protein half-life datasets,

and the availability of yeast-specific tools such as nTE, sequence-function analyses in yeast are

further simplified by the absence of tissue-specific effects and limited alternative splicing (only

~4% of yeast genes contain introns and, of those genes, only a small fraction is capable of pro-

ducing alternative protein products [57,58]).

With these caveats in mind, we sought to examine whether similar relationships between

local amino acid composition and protein abundance could be detected in a model multicellu-

lar eukaryotic organism. We decided to focus on whole-organism protein abundance measure-

ments in C. elegans [59] for four main reasons: 1) due to technical experimental challenges,

protein abundance measurements in C. elegans are substantially more robust than protein

half-life measurements; 2) on a proteome-wide scale, protein abundance is more strongly con-

served across yeast species than protein half-life [49], suggesting that final protein levels tend

Residue-dependent effects of amino acid composition on protein biology
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Fig 5. Maximum local amino acid composition is associated with residue-specific differences in nTE. For each

amino acid, nTE values corresponding to proteins partitioned into a given window size and percent composition bin

were compared to nTE values for all proteins of length� the corresponding window size that were excluded from the

bin.

https://doi.org/10.1371/journal.pcbi.1006256.g005
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to be constrained across organisms, while regulation of the metabolic pathways that contribute

to protein abundance may vary; 3) protein abundance is, at least partially, a function of transla-

tion efficiency and protein half-life; and 4) the parameters underlying the translation efficiency

method (namely the “s-vector”, or the efficiency of wobble base pairing between tRNA isoac-

ceptors) were optimized for yeast [60]. Therefore, the nTE method may not be amenable to

application in other organisms.

In order to examine relationships between maximum local composition and protein abun-

dance, we first determined the proteome distribution of C. elegans proteins as a function of

maximum local composition for each amino acid. The C. elegans-specific proteome distribu-

tions (S2 Fig and S2 Table) were overall quite similar to the yeast proteome distributions (Fig

2). However, the maximum local composition for S and N appear to be slightly more con-

strained in C. elegans (indicated by contraction of the shoulder to lower maximum composi-

tions), while G, P, and T achieve slightly higher maximum local compositions, indicating

relaxed constraints on local enrichment of these residues. These results are consistent with

previous observations noting both shared and organism-specific homopolymeric repeat

signatures or bulk proteome compositions across proteomes from different organisms

[4,38,40,41,44–46,61].

As observed in yeast, progressive compositional enrichment results in a transition from

higher to lower median abundance for the majority of amino acids with a clear trend (C, F, I,

M, N, P, S, W, and Y; Fig 6). Furthermore, all three amino acids (A, G, and V) that exhibit a

Table 1. The life-cycle of proteins with high local composition of individual amino acids involves the coordinated

regulation of translation efficiency, protein abundance, and protein half-life. For each amino acid, trends in

median values for nTE, protein abundance, and half-life upon enrichment (i.e. approaching higher percent composi-

tions) of the given amino acid are indicated. “Higher” indicates that proteins in larger percent composition bins tend

to have a larger median value compared to all other proteins, while “Lower” indicates that proteins in larger percent

composition bins tend to have a larger median value compared to all other proteins. “Mixed” indicates amino acids for

which multiple transitions are observed upon progressive compositional enrichment. Datasets without clear, statisti-

cally significant transition thresholds are also indicated (“n.s.”). Colors correspond to the colors used in Figs 3–5.

Amino Acid nTE Abundance Half-life

A Higher Higher Higher

C Lower Lower Lower

D Lower Lower n.s.

E Lower Mixed n.s.

F Lower Lower Mixed

G Higher Higher Higher

H Lower Lower Lower

I Lower Lower Higher

K Lower Mixed Lower

L Lower Lower n.s.

M Lower Lower Lower

N Lower Lower Lower

P Lower Lower Lower

Q Lower Lower n.s.

R Lower Lower n.s.

S Mixed Lower Lower

T Mixed Lower Lower

V Higher Higher Higher

W Mixed Lower n.s.

Y Lower Lower n.s.

https://doi.org/10.1371/journal.pcbi.1006256.t001
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Fig 6. Relationships between maximum local composition and protein abundance in C. elegans. For each amino

acid, protein abundance values corresponding to proteins partitioned into a given window size and percent

composition bin were compared to values for all proteins of length� the corresponding window size that were

excluded from the bin. Trends in protein abundance as a function of maximum local composition for many amino

acids are remarkably similar between yeast and C. elegans (compare with Fig 3).

https://doi.org/10.1371/journal.pcbi.1006256.g006
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transition from lower to higher median abundance upon progressive enrichment in yeast

exhibit the same trend in C. elegans as well. Indeed only one amino acid with a clear transition

in protein abundance upon local enrichment differs between C. elegans and S. cerevisiae: in

yeast, local K enrichment is associated with mixed effects on protein abundance (depending

on the degree of K enrichment), whereas in C. elegans local K enrichment is weakly (yet consis-

tently) associated with higher protein abundance. Therefore, nearly identical residue-specific

relationships are observed between local amino acid enrichment and protein abundance in a

more complex eukaryote.

Compositional enrichment is linked to effects on protein metabolism in the

absence of classical low-complexity, statistically-biased, and

homopolymeric domains

An important advantage of approaching LCDs from a composition-centric perspective is the

ability to examine relationships between amino acid composition and protein outcomes with-

out appealing to pre-defined thresholds of statistical amino acid bias [11] or sequence com-

plexity [1,10], which may not reflect biologically-relevant thresholds. Indeed, the transitions

observed in the median translation efficiencies, protein abundances, and protein half-lives

often occur at surprisingly mild levels of compositional enrichment, suggesting that these

trends may be observed even in the absence of classically-defined statistically-biased or low-

complexity domains.

Statistical amino acid bias conceptually parallels our investigation of compositional enrich-

ment, and has been used to investigate the functions of proteins with statistically-biased

domains [11,12]. To examine whether compositional enrichment may be linked to biologi-

cally-relevant effects on protein metabolism independently of statistically-biased domains, a

conservative bias threshold was employed to define statistically-biased domains using previ-

ously developed methodology [12] (also, see Methods). Proteins with statistically-biased

domains were then filtered from the yeast proteome (n = 866 statistically-biased proteins for

the yeast translated proteome of sequences� 30 residues in length). However, even in the

absence of statistically-biased domains, compositional enrichment resulted in robust trends in

translational efficiency, protein abundance, and protein half-life that re-capitulated those orig-

inally observed (S3–S5 Figs). This suggests that compositional enrichment affects protein

metabolism at thresholds preceding those required for classification as statistically-biased by

alternative methods.

The SEG algorithm, by default, employs substantially more relaxed criteria when classifying

protein domains as low-complexity [1]. Indeed, of the 5,901 proteins of length�30 amino

acids in the translated ORF proteome, 4,147 proteins contain at least one LCD, which is con-

sistent with previous estimates [3]. Nevertheless, despite a large reduction in proteome size,

many of the trends in protein metabolism are discernible even when all proteins with a SEG-

positive sequence are filtered from the proteome (S6–S8 Figs). This suggests that composi-

tional enrichment exerts biologically relevant effects even among non-LCD-containing

proteins.

Proteins containing homopolymeric amino acid repeats (often defined as five or more iden-

tical amino acids in succession), were recently reported to have lower translation efficiency,

lower protein abundance, and lower protein half-life when compared to proteins without

homopolymeric repeats [37]. Homopolymeric repeats are effectively short sequences of maxi-

mum possible single-amino acid density. Therefore, proteins with homopolymeric repeats are

expected to be disproportionately common among compositionally enriched domains, raising

the possibility that the trends observed in the present study have been mis-attributed to
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compositional enrichment alone. To examine this possibility directly, the relationship between

compositional enrichment and nTE, abundance, and half-life was re-evaluated for a filtered

proteome that excludes all proteins containing at least one homopolymeric repeat (n = 755

proteins excluded). While exclusion of these proteins preferentially reduces the sample sizes at

higher compositional enrichment percentages, the absence of homopolymeric repeat proteins

has little effect on the trends in nTE, abundance, and half-life as a function of compositional

enrichment (S9–S11 Figs). This does not definitively rule out the possibility that homopoly-

meric repeats may, in some way, specifically affect translation efficiency, abundance, and half-

life. However, since homopolymeric repeats per se are not absolutely required, the effects of

homopolymeric repeats may instead be explained simply by local compositional enrichment.

Collectively, these results suggest that compositional enrichment affects translation effi-

ciency, protein abundance, and protein half-life at thresholds preceding those required for

classification as low-complexity or statistically-biased by traditional methods. It is worth not-

ing that in the course of eliminating proteins with classically-defined low-complexity, statisti-

cally-biased, or homopolymeric domains, proteins with multiple distinct domains strongly

enriched in different amino acid types, or with single domains strongly enriched in more than

one amino acid, are eliminated from the proteome before re-evaluation. Therefore, the trends

in protein metabolism observed upon enrichment of a given amino acid are not due to con-

founding effects of domains strongly enriched in other amino acids occurring within the same

protein sequences.

Local compositional enrichment influences protein-protein interaction

promiscuity in a residue-specific manner

Local enrichment of a single amino acid can dramatically influence the physicochemical prop-

erties of a given protein domain [24]. In a cellular context, these physicochemical properties

likely influence interactions between proteins and surrounding molecules, including other

proteins.

To examine whether local compositional enrichment affects protein-protein interactions,

we explored relationships between enrichment for each of the amino acids and protein-protein

interaction promiscuity (defined as the number of unique interacting partners per protein).

Proteins found in a range of high-percent composition-bins for most amino acids (A, D, E, G,

K, N, P, Q, R, and V) are associated with significantly more interacting partners relative to all

other proteins (Fig 7), suggesting that these domains are relatively promiscuous. Additionally,

proteins with mild enrichment for select hydrophobic residues (I, L, and M) are generally asso-

ciated with more interacting partners, although fewer comparisons reach statistical signifi-

cance (blue or red dots). These results are consistent with previous reports that, as a single

class, proteins with LCDs or homopolymeric repeats tend to have more protein-protein inter-

action partners [16,37]. However, proteins in a range of high-percent composition-bins for

each of the aromatic residues (F, W, and Y) are associated with significantly fewer interacting

partners relative to other proteins, suggesting that aromatic residues tend to lack the interac-

tion promiscuity observed at higher percent compositions for other amino acids. Furthermore,

proteins with moderate to high local C content and proteins with extremely high maximum

local S or T content are also associated with significantly fewer interacting partners relative to

other proteins, suggesting that these domains are relatively non-promiscuous as well. This is

particularly interesting, given that these trends were not observed upon enrichment for other

polar residues. Again, this highlights the potential pitfall of grouping amino acids with related

physicochemical properties into a single category. Collectively, these results indicate that
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Fig 7. Maximum local amino acid composition corresponds to protein-protein interaction promiscuity in a

residue-specific manner. Local enrichment for individual amino acids corresponds to composition-dependent

changes in the number of unique protein-protein interaction partners.

https://doi.org/10.1371/journal.pcbi.1006256.g007
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protein-protein interaction promiscuity varies for proteins with high compositional enrich-

ment in a residue-specific manner.

Proteins with high compositional enrichment can fulfill overlapping or

specialized molecular roles in the cell

Previous studies have attempted to associate proteins containing LCDs, statistically-biased

domains, and homopolymeric repeats with particular cellular functions [12,16–18,34,37].

However, one important consideration when inferring relationships between proteins with

LCDs and cellular functions, for example, is the prevalence of proteins with multiple LCDs [3],

and of LCDs strongly enriched in more than one amino acid type [11,14,18,36]. Therefore,

attempts to associate cellular functions to specific LCD types, without controlling for other

LCDs within the same protein sequences, risk mis-attributing functions to unrelated protein

features [12,14,34,36]. While multiple LCDs within the same protein (or multiple amino acid

types enriched within the same LCD) may cooperate to generate novel structures or functions,

this complicates interpretation of the role of each individual amino acid type within LCDs.

Furthermore, because some types of LCDs are more common than others, general attempts to

associate cellular functions with LCDs, statistically-biased domains, or homopolymeric repeats

likely reflect the functions associated with only the most common types when considered as a

single, unified class [16,37]. Therefore, definitive assignment of cellular functions to each indi-

vidual class of LCD necessitates exclusion of proteins with other types of LCDs.

In order to minimize possible confounding effects introduced by proteins with multiple

regions enriched in different amino acid types, a modified version of the initial calculation per-

formed by the SEG algorithm (namely, the Shannon entropy; see Methods) was employed to

define proteins with only a single type of compositionally-enriched domain (CED). In an effort

to incorporate our results (which indicate that compositional enrichment may exert biologi-

cally-relevant effects at compositions preceding the SEG algorithm threshold) into our defini-

tion of single-CED proteins, percent composition bins for which at least 75% of the residing

proteins contained a SEG-positive sequence (as defined above) were pooled to generate a sin-

gle list of CED-containing proteins for each amino acid. Proteins that contain multiple types

of CEDs were then removed from the dataset, resulting in a non-redundant set of proteins

with only one type of CED. Importantly, this method captures the exclusion of proteins con-

taining more than one type of CED, as well as proteins with CEDs strongly enriched in more

than one amino acid type.

Gene Ontology (GO) term analysis was performed separately for each window size within

each single-CED category. For each type of CED, there is strong overlap in the enriched GO

terms across the range of window sizes, suggesting that the associations between functions and

residue-specific CEDs are not strongly length-dependent at this scale. Therefore, for simplicity

of interpretation, significantly enriched GO terms for each window size were pooled to gener-

ate a single non-redundant list of enriched GO terms for each CED type.

Removal of proteins with multiple types of CEDs reveals a remarkable degree of specializa-

tion for CEDs of different types (Fig 8, and S3 Table), which is often not observed for CEDs

when considered as a single category or when multi-CED proteins are not excluded. For exam-

ple, L-rich proteins are predominantly associated with functions at the ER and vacuole mem-

branes, whereas I-rich proteins are more strongly associated with carbohydrate transport at

the plasma membrane. A-rich proteins are associated with a variety of processes or cellular

components, including translation, protein kinase activity, the cell wall, and carbohydrate/

alcohol catabolism. N-rich proteins are strongly (and perhaps exclusively) associated with

functions related to transcription, whereas Q-rich proteins appear to be more weakly
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associated with transcription and, instead, are associated with a larger variety of functions

including endocytosis, mating projection of the membrane, and response to glucose. Finally,

although yeast cell wall proteins are often radically S/T-rich, after controlling for co-enrich-

ment of S and T in the same proteins, S-rich proteins are more strongly associated with mem-

brane-related processes (cell wall, cellular bud tip, cellular bud neck, mating tip projection,

etc.), protein kinase activity, and transcription, whereas T-rich proteins tend to be associated

with nucleic acid binding and helicase activity, with fewer associations with membrane-related

processes. Therefore, after controlling for the presence of multiple CEDs within the same pro-

teins, specialized functions emerge even among commonly grouped amino acids.

Furthermore, CEDs enriched in some amino acids share functions despite the removal of

multi-CED proteins, suggesting some degree of co-specialization. For example, D-, E-, and K-

rich CEDs were each associated with functions in the nucleus/nucleolus, including ribosomal

RNA processing, nucleic acid binding, transcription, and histone/chromatin binding. Intrigu-

ingly, intrinsically disordered domains with opposite net charges (along with other charged

macromolecules such as nucleic acids and polyADP-ribose) can drive phase separation or

Fig 8. Cell model depicting predominant functions of CEDs. Residue-specific CEDs are associated with both overlapping and distinct functions. Main cellular/

molecular processes associated for each type of CED are derived from significantly enriched (Bonferroni-corrected p� 0.05) GO-terms in S3 Table.

https://doi.org/10.1371/journal.pcbi.1006256.g008
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complex coacervation in the nucleus [62–64]. It is possible that these domains, along with

nucleic acids and other polyionic molecules, may participate in nuclear processes via dynamic

electrostatic association with these or other membraneless assemblies. By contrast, H-rich

CEDs are associated with processes related to zinc ion transport and regulation. There were no

GO terms significantly associated with R-rich CEDs. However, compositional enrichment for

R appears to be constrained, as evidenced by the sharp decline in the number of proteins with

R-rich domains toward higher maximum local percent compositions (see Fig 2), which may

be further impacted by the removal of proteins with other types of CEDs.

In summary, when examined as separate classes, different types of CEDs can have overlap-

ping or specialized roles in the cell.

Compositional enrichment corresponds to preferential localization to

specific subcellular compartments

The molecular specialization observed for CEDs indicates that proteins with enrichment of

particular residues may localize to particular subcellular compartments in order to execute

their specialized functions. Furthermore, protein quality control factors can differ between

subcellular compartments (for review, see [65]), which may contribute to composition-depen-

dent differences in protein metabolism. Therefore, we applied a bottom-up approach to infer

the composition profiles associated with the major subcellular compartments (see Methods).

Largely aqueous subcellular compartments are almost exclusively associated with proteins

containing domains enriched in charged residues, polar residues, and proline (Fig 9; see also

S12 Fig). However, differences in compositional enrichment profiles are apparent even among

related aqueous compartments. For example, significant associations with charged, Q, or N

residues reach more extreme percent compositions in the nucleus, whereas as significant asso-

ciations with P enrichment reach higher percent compositions in the cytoplasm. By contrast,

the highly membraneous internal organelles (e.g. the endoplasmic reticulum and Golgi appa-

ratus) are predominantly associated with enrichment of hydrophobic or aromatic residues

(Figs 9 and S13). The yeast vacuole is also associated with composition profiles resembling

those of membraneous compartments, with additional weaker associations with S and C

enrichment. Few weak associations are observed for mitochondria. The yeast cell wall is

strongly associated with S enrichment (likely related to its ability to be glycosylated), with addi-

tional moderate associations with T and A enrichment, and a weak association with mild V

enrichment (Figs 9 and S14). As expected, the plasma membrane is associated with enrichment

for a variety of hydrophobic and aromatic residues. However, the plasma membrane is also

significantly associated with enrichment of a select subset of polar residues (namely C, G, S,

and T), further corroborating the specialized roles observed for these CEDs at the outer mem-

brane. Indeed, G-rich CEDs are significantly associated with amino acid transport (see S3

Table), and S- or T-rich CEDs of the plasma membrane could have overlapping functions or

interactions with S- and T-rich CEDs of the cell wall. Together, these observations indicate

that subcellular compartments may tolerate or prefer proteins with specific types of CEDs.

Components of stress granules and processing bodies possess shared and

unique compositional features

Recent observations indicate that a variety of Q/N-rich and G-rich domains can form highly

dynamic protein-rich droplets in aqueous environments [25–30], a process referred to as liq-

uid-liquid phase separation. These types of LCDs are prevalent among components of mem-

braneless organelles such as stress granules and P-bodies [23]. Furthermore, stress granules

and P-bodies share many properties with protein-rich liquid droplets formed in vitro,
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suggesting that the fundamental biophysical properties of these domains are related to the for-

mation of membraneless organelles in vivo. However, while amino acid composition is

acknowledged as a critical determinant of this behavior, the precise compositional require-

ments associated with membraneless organelles remain largely undefined.

Therefore, we also applied our bottom-up approach to infer the compositional enrichment

profiles associated with protein components of stress granules and P-bodies (as defined in

[66]). Stress granules and P-bodies have overlapping protein constituents and can exchange

protein components [67,68], suggesting that they are closely related yet distinct organelles.

Accordingly, we observe both shared and unique features in the composition profiles associ-

ated with stress granule and P-body proteins (Fig 10). As expected, both stress granules and P-

bodies are strongly associated with proteins containing Q-rich or N-rich domains. For

Fig 9. Compositional enrichment profiles associated with major subcellular compartments. All plotted points indicate protein sets for which association with the

indicated subcellular compartment is statistically significant (Fisher’s exact test, with Bonferonni-corrected p< 0.05). Warm colors (reds, oranges, and yellows)

correspond to charged residues. Green colors indicate polar residues. Cool colors (purples and blues) correspond to hydrophobic and aromatic residues respectively.

https://doi.org/10.1371/journal.pcbi.1006256.g009
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Fig 10. Composition profiles associated with membraneless organelles. All colored points indicate minimum percent composition thresholds for

which components of stress granules (A) or P-bodies (B) are significantly enriched (p< 0.05). Only amino acids for which significant enrichment of

stress granule or P-body proteins was observed in at least two composition bins are shown. For greater sensitivity, plots were generated using

uncorrected p-values. Therefore, any individual point should be viewed with some skepticism: however, the presence of multiple consecutive significant

points within each window size suggest that the observed trend is likely not an artifact of multiple hypothesis testing.

https://doi.org/10.1371/journal.pcbi.1006256.g010
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example, minimum Q or N compositions significantly associated with stress granules range

from ~15–100% at small window sizes (�30 amino acids) and ~10–30% at large window sizes

(�80 amino acids), although these values vary slightly depending on window size and residue.

Similarly, minimum Q or N compositions significantly associated with P-bodies range from

~15–100% at small window sizes and ~10–40% at larger window sizes.

In addition to the commonly appreciated link between stress granule/P-body components

and Q/N-rich domains, we identify and define a variety of currently underappreciated compo-

sitional features common to stress granule and P-body components. Components of both

stress granules and P-bodies are strongly associated with P-rich domains, weakly associated

with K-rich domains, and very weakly (yet significantly) associated with Y-rich domains. Fur-

thermore, while both stress granules and P-bodies are associated with proteins containing G-

rich domains, stress granule components are associated with a much broader range of G

enrichment, suggesting that G enrichment may be a more characteristic feature of stress gran-

ules than P-bodies. This is particularly striking in light of recent observations indicating that

high glycine content helps maintain the liquid-like characteristics of phase-separated droplets

and prevents droplet hardening in vitro [69].

Additionally, some compositional features are unique to either stress granules or P-bodies.

For example, stress granule constituents are significantly associated with A-rich, M-rich, E-

rich, and R-rich domains, whereas P-body constituents exhibit little or no preference for these

compositional features (a key role for arginine in the phase separation of stress granule-associ-

ated proteins was also recently reported [69]). By contrast, P-body components are weakly

associated with H-rich domains, whereas stress granule components are not enriched among

proteins containing H-rich domains.

To our knowledge, this represents the first attempt to systematically define the range of

amino acid compositions associated with membraneless organelles such as stress granules and

P-bodies. These observations suggest that components of related, membraneless organelles

have overlapping yet distinct compositional preferences. It is possible that shared composi-

tional features facilitate the physical interactions between stress granules and P-bodies and

allow for the exchange of components, while differences in compositional features facilitate

their ability to function as independent organelles.

Discussion

Protein domains categorized as low-complexity, statistically-biased, or homopolymeric

encompass broad, heterogeneous classes of sequences with diverse physical properties and cel-

lular functions. These domains can play important roles in normal and pathological processes.

However, challenges in categorizing proteins on the basis of sequence complexity or statistical

bias have thus far precluded a complete, proteome-wide view of the effects of these domains

on protein regulation and function. Here, we adopt an alternative, unbiased approach to exam-

ine proteome-wide relationships between local amino acid enrichment and the birth, abun-

dance, functions, subcellular localization, and death of proteins. For nearly all amino acids,

progressive local enrichment corresponds to clear transition thresholds with regard to transla-

tion efficiency, protein abundance, and protein half-life. Transition thresholds ubiquitously

occurred at compositions preceding those required for classification as low-complexity or sta-

tistically-biased by traditional methods, indicating that our observed transition thresholds

more closely reflect biologically-relevant composition criteria.

Protein sequences can range from perfectly diverse (i.e. a completely homogeneous mixture

of amino acids with maximal spacing between identical amino acids) to lacking any diversity

(i.e. homopolymeric sequences). While homopolymeric regions represent an extreme on this
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spectrum and can influence protein metabolism [37], classically defined homopolymeric

regions are not absolutely required for these effects (see S9–S11 Figs). This suggests that com-

positional enrichment may affect protein metabolism even upon some degree of primary

sequence dispersion (i.e. greater linear spacing between identical amino acids). Defining the

limits of this dispersion may shed additional light on the relationship between amino acid

composition and protein metabolism.

An advantage of assessing compositional enrichment (as opposed to sequence complexity)

is the ability to distinguish the effects of compositional enrichment for each amino acid type.

The nature of the trends in translation efficiency, protein abundance, and protein half-life

depend on the amino acid enriched in the protein sequences, indicating that local enrichment

of different amino acids can have opposite effects. This highlights a key limitation when con-

sidering low-complexity, statistically-biased, or homopolymeric domains as a single class–

grouping domains composed of radically different amino acids effectively skews any trends

observed toward those of the most common type and, in some cases, can completely mask the

effects of less common low-complexity, statistically-biased, or homopolymeric domains. Fur-

thermore, even grouping these domains on the basis of common physicochemical properties

can introduce the same complication. This is exemplified by the non-aromatic hydrophobic

amino acids; while I-rich, L-rich, and M-rich domains are associated with poor translation effi-

ciency, low abundance, and rapid degradation rate, A-rich and V-rich domains are associated

with high translation efficiency, high abundance, and slow degradation rate. Additionally, the

cellular functions associated with domains enriched in hydrophobic residues tend to differ; L-

rich domains are predominantly associated with the ER or vacuole membrane, whereas I-rich

domains are predominantly associated with carbohydrate transport at the plasma membrane.

Similarly, N-rich domains are strongly associated with transcription-related processes,

whereas Q-rich domains are more strongly associated with endocytosis and other processes in

the cytoplasm. While there is some overlap between these two groups, this suggests that

domains enriched in remarkably similar amino acids may yet be favored for specialized roles

in the cell.

Finally, a bottom-up application of our composition-centric algorithm to membraneless

organelles provides the first step in defining the distinct compositional profiles associated with

each type of organelle. We find that even closely related and physically interacting organelles

are associated with discernible differences in compositional enrichment, which may relate to

differences in their properties, regulation, and function in vivo. It is important to note that,

while the observed trends in compositional enrichment are significantly associated with stress

granule proteins or P-body proteins as respective groups, these features may not be absolutely

required for individual proteins to be incorporated into stress granules and/or P-bodies. It is

possible, for example, that two proteins possessing non-overlapping subsets of the associated

compositional features may still be recruited to stress granules, and that some stress granule

proteins may be recruited for reasons entirely distinct from compositional enrichment (e.g. via

RNA-binding domains). One might even imagine that differences in compositional features,

while still allowing recruitment to stress granules and/or P-bodies, could favor differences in

the dynamics of individual protein components (e.g. the kinetics of entry/exit, dwell time, the

strength of the interactions, or the depth of penetration within the stress granule/P-body).

Therefore, while the associated composition ranges observed here are collectively enriched

among proteins associated with these membraneless organelles, each individual protein need

not possess all of the compositional features simultaneously in order to function as a stress

granule or P-body protein.

While a great deal of attention is rightfully devoted to understanding the effects of primary

amino acid sequence on protein fates (including folding, regulation, and functions), amino
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acid composition is increasingly believed to drive a variety of cellular and molecular processes.

Here, we have developed an approach to examine relationships between local compositional

enrichment and protein fates for each of the canonical amino acids, in the absence of a priori
assumptions or pre-defined thresholds. Our results provide a coherent, proteome-wide view of

the relationships between compositional enrichment and the fundamental aspects of protein

life cycle, subcellular localization, and function in model eukaryotic organisms.

Methods

Composition-based proteome scanning algorithm

Protein sequences were parsed using FASTA sequence parsing module from the Biopython

package [70]. For each amino acid in the set of 20 canonical amino acids, each protein in the

translated ORF proteome (latest release from the Saccharomyces Genome Database website,

last modified 13-Jan-2015) or the ORF coding sequences (organismID:UP000001940_6239,

release date 23-May-2018 downloaded from the UniProt website) was scanned using a sliding

window of defined size (ranging from 10 to 100 amino acids, in increments of 10). The percent

composition of the amino acid of interest (AAoI) is calculated for each window, and the pro-

tein is sorted into bins based on the maximum percent composition achieved for the AAoI

(ranging from 0 to 100 percent composition in 5 percent increments). Analyses were per-

formed for all possible AAoI, window size, and percent composition combinations.

Normalized translation efficiency (nTE)

Translation efficiency for each gene was estimated using the normalized translation efficiency

(nTE) scale [55], which is based on tRNA gene copy number, codon-anticodon wobble base-

pairing efficiency, and transcriptome-wide codon usage. However, the original nTE algorithm

plots all nTE values for each codon to generate a separate translation efficiency profile for each

gene. In order to condense translation efficiency information to a single value for each gene

(in a manner analogous to the tRNA adaptation index; [60]), the geometric mean of nTE val-

ues across the transcript was calculated as

nTEgene ¼
Yls

k¼1

nTEiks

 !1
ls

ð1Þ

where nTEiks represents the translation efficiency value of the ith codon defined by the kth trip-

let in nucleotide sequence s, and ls represents the length of the nucleotide sequence excluding

stop codons. Therefore, nTE values reported in the current study represent whole-gene nTE

values. nTE analyses were performed using an in-house Python script.

Defining Shannon entropy, statistical amino acid bias, and homopolymeric

repeats

The Shannon entropy of each sequence was calculated as

SE ¼ �
XN¼20

i¼1

ni

L
log2

ni

L

� �
ð2Þ

where N represents the size of the residue alphabet (N = 20, for the canonical amino acids), ni

represents the number of occurrences of the ith residue within the given sequence window of

length L. For comparison with established measures of sequence complexity, we defined low-

complexity domains by using the default window size (12 amino acids) and Shannon entropy
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threshold (SE� 2.2bits) used in the first pass of the SEG algorithm to initially identify LCDs

[1,10].

In the SEG algorithm, the complexity state vector used to calculate the Shannon entropy is

blind to the amino acid composition (i.e. the ni values in Eq 2 are not attributed their respec-

tive amino acids). Therefore, when indicated, in order to distinguish LCDs on the basis of the

predominant amino acid, sequences for which the SE� 2.2bits and nAAoI� nmax within the

complexity state (indicating that the AAoI is a major contributor to the sequence’s classifica-

tion as an LCD) were assigned to the corresponding amino acid category (e.g. A-rich LCDs,

C-rich LCDs, etc.). Single-LCD/CED proteins are proteins classified as LCDs or CEDs that do

not appear on multiple amino acid-specific LCD/CED lists.

Statistical amino acid bias was calculated as described in [12]. Briefly, the lowest probability

subsequence for each protein was determined by exhaustively scanning proteins with window

sizes ranging from 25 to 2500 amino acids. For each window, the subsequence bias probability

(Pbias) was defined as

Pbias ¼
w!

n!ðw � nÞ!

� �

� ðfxÞ
n
� ð1 � fxÞ

w� n
ð3Þ

where w denotes the window size, n denotes the number of occurrences of the amino acid of

interest within the subsequence, and fx denotes the fraction of the amino acid of interest in the

yeast translated proteome. The lowest probability subsequence for each protein is the subse-

quence with the lowest Pbias.

A suitable threshold to define statistically-biased proteins within the yeast protein was

determined as previously described [12], except that more relaxed criteria were used in order

to include additional proteins with less extreme biases. Briefly, the Pbias corresponding to the

lowest probability subsequence (Pmin) for each protein was plotted on a log-log plot against

whole-protein sequence length. A line was fitted, then the y-intercept was decreased until only

15% of the proteome had Pmin values below the line (previous analyses used a more stringent

cutoff of 10% to define statistically-biased proteins [12]). Additionally, a length-independent

threshold was designated as the Pmin value at which 15% of the proteome had smaller absolute

Pmin values. This threshold was used when it was less than the Pmin threshold given by the

length-dependent method to avoid unreasonably relaxed bias criteria for small protein

sequences. Amino acid bias was calculated using values from the translated orf proteome only,

and implemented via an in-house Python script with pre-computed look-up tables for compu-

tational efficiency.

Proteins containing homopolymeric sequences were defined simply as any protein with a

subsequence of five or more contiguous residues of the same amino acid, as previously

described [37].

Protein abundance and protein half-life data

Yeast protein abundance values (in average number of molecules per cell per protein) were

obtained from [48] (n = 5,391). Protein abundance values for C. elegans were obtained from

[59]. Yeast protein half-life data were obtained from [49]. For simplicity of interpretation, only

proteins with unambiguous, non-zero half-life or abundance values were included in the data-

sets. Proteins listed on separate lines with identical half-life or abundance values were retained,

whereas protein half-life or abundance measurements assigned to more than one protein on

the same line were excluded (these were often highly homologous genes, suggesting that the

measurement could not be unambiguously assigned to one of the proteins). Furthermore, all

proteins corresponding to “low-confidence” measurements in the half-life dataset were
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excluded (see [49] for criteria). n = 3,525 for the filtered yeast half-life dataset, and n = 5,952

for the filtered C. elegans protein abundance dataset.

Statistics and plotting

For all AAoI/window size/percent composition bins, the distribution of nTE, abundance, or

half-life values for proteins included in the given bin was compared to the distribution of the

respective values of all proteins excluded from the given bin. Statistical significance was esti-

mated using a two-sided Mann-Whitney U test (also referred to as the Wilcoxon rank-sum

test; refer to Supplemental Experimental Procedures from [47] for a detailed description and

rationale). Where indicated, p-values were adjusted within each window using the Bonferroni

correction method for multiple hypothesis testing. All statistical tests were performed using

modules available in the SciPy package with default settings, unless otherwise specified. All

plots were generated using Matplotlib or Seaborn modules.

Gene ontology (GO) term enrichment analyses

GO term enrichment tests were performed using the GOATOOLS package (version 0.7.9) [71]

for each set of proteins contained in a given amino acid/window size/percent composition bin.

For each test, the set of background proteins was defined as all proteins from the translated

ORF proteome of sequence length greater than or equal to the given window size. All reported

p-values were adjusted using the Bonferroni correction during GO term association. To evalu-

ate the compositional enrichment profiles associated with GO terms related to subcellular

compartments, we applied a minimum-threshold-scanning approach to all partitioned prote-

omes. For each AAoI, window size, and percent composition bin, all proteins with maximum

local compositions greater than or equal to the current percent composition under consider-

ation are pooled and evaluated for possible enriched GO terms. This effectively evaluates possi-

ble GO term enrichment iteratively with increasing maximum local composition criteria. GO

term results were subsequently evaluated for significant enrichment of a single GO term

describing each subcellular compartment (or two related GO terms, “outer membrane” and

“plasma membrane”, in the case of the plasma membrane). p-values were further adjusted

within each window size using the Bonferroni correction method.

Similar analyses were performed for the sets of experimentally-defined stress granule

(n = 83) and P-body (n = 52) proteins [66]. Specifically, a minimum-threshold-scanning

approach was applied to all partitioned proteomes. For each AAoI, window size, and percent

composition bin, all proteins with maximum local compositions greater than or equal to the

current percent composition under consideration are pooled. Significant enrichment of exper-

imentally-defined stress granule or P-body proteins within each pool of proteins was evaluated

using Fisher’s exact test (p< 0.05).

Supporting information

S1 Table. Maximum local composition values for each amino acid and window size combi-

nation for all translated yeast proteins. For each protein in the translated ORF proteome,

nTE, protein abundance, and protein half-life values are indicated. nTE was calculated accord-

ing to the method described in [55]. Protein abundance and protein half-life values were

reported in [48] and [54], respectively. Remaining columns contain the maximum local com-

position value (per 100) for each amino acid and window size combination for each protein.

(CSV)
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S2 Table. Maximum local composition values for each amino acid and window size combi-

nation for all C. elegans proteins. For each protein in the C. elegans proteome, protein abun-

dance values (mean measured intensity across 3 biological replicates from [59]; see Methods

section for inclusion criteria) are indicated. Remaining columns contain the maximum local

composition value (per 100) for each amino acid and window size combination for each pro-

tein.

(CSV)

S3 Table. Residue-specific CEDs are associated with unique cellular structures and pro-

cesses. All GO terms listed represent terms significantly associated with a set of residue-spe-

cific CEDs for at least one window size (Bonferroni-corrected p� 0.05).

(XLSX)

S1 Fig. Maximum local amino acid composition corresponds to residue-dependent differ-

ences in protein synthesis efficiency. Local enrichment for individual amino acids corre-

spond to composition-dependent changes in experimentally-derived protein synthesis

efficiency [56].

(TIF)

S2 Fig. Distribution of the C. elegans proteome based on maximum local amino acid com-

position. The number of proteins partitioned into each window size/percent composition bin

for each of the 20 canonical amino acids are plotted as a function of maximum local composi-

tion for each window size. Scatter points are connected by line segments for visual clarity only.

(TIF)

S3 Fig. Associations between local compositional enrichment and nTE persist in the

absence of proteins with statistically-biased domains. For each amino acid, nTE values cor-

responding to proteins partitioned into a given window size and percent composition bin

were compared to values for all proteins of length� the corresponding window size that were

excluded from the bin. Red and blue points indicate bins for which the distribution of protein

half-life values differ significantly (Bonferroni-corrected p� 0.05) from those of excluded pro-

teins: red points indicate bins with a lower median value relative to that of excluded proteins,

whereas blue points indicated bins with a higher relative median value. Grey points indicate

comparisons lacking statistical significance. Individual points are scaled within each subplot to

reflect the sample sizes of proteins contained within each bin.

(TIF)

S4 Fig. Associations between local compositional enrichment and protein abundance per-

sist in the absence of proteins with statistically-biased domains. For each amino acid, pro-

tein abundance values corresponding to proteins partitioned into a given window size and

percent composition bin were compared to values for all proteins of length� the correspond-

ing window size that were excluded from the bin. Red and blue points indicate bins for which

the distribution of protein half-life values differ significantly (Bonferroni-corrected p� 0.05)

from those of excluded proteins: red points indicate bins with a lower median value relative to

that of excluded proteins, whereas blue points indicated bins with a higher relative median

value. Grey points indicate comparisons lacking statistical significance. Individual points are

scaled within each subplot to reflect the sample sizes of proteins contained within each bin.

(TIF)

S5 Fig. Associations between local compositional enrichment and protein half-life persist

in the absence of proteins with statistically-biased domains. For each amino acid, protein

half-life values corresponding to proteins partitioned into a given window size and percent
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composition bin were compared to values for all proteins of length� the corresponding win-

dow size that were excluded from the bin. Red and blue points indicate bins for which the dis-

tribution of protein half-life values differ significantly (Bonferroni-corrected p� 0.05) from

those of excluded proteins: red points indicate bins with a lower median value relative to that

of excluded proteins, whereas blue points indicated bins with a higher relative median value.

Grey points indicate comparisons lacking statistical significance. Individual points are scaled

within each subplot to reflect the sample sizes of proteins contained within each bin.

(TIF)

S6 Fig. Associations between local compositional enrichment and nTE persist in the

absence of LCD-containing proteins. For each amino acid, nTE values corresponding to pro-

teins partitioned into a given window size and percent composition bin were compared to val-

ues for all proteins of length� the corresponding window size that were excluded from the

bin. Red and blue points indicate bins for which the distribution of protein half-life values dif-

fer significantly (Bonferroni-corrected p� 0.05) from those of excluded proteins: red points

indicate bins with a lower median value relative to that of excluded proteins, whereas blue

points indicated bins with a higher relative median value. Grey points indicate comparisons

lacking statistical significance. Individual points are scaled within each subplot to reflect the

sample sizes of proteins contained within each bin.

(TIF)

S7 Fig. Associations between local compositional enrichment and protein abundance per-

sist in the absence of LCD-containing proteins. For each amino acid, protein abundance val-

ues corresponding to proteins partitioned into a given window size and percent composition

bin were compared to values for all proteins of length� the corresponding window size that

were excluded from the bin. Red and blue points indicate bins for which the distribution of

protein half-life values differ significantly (Bonferroni-corrected p� 0.05) from those of

excluded proteins: red points indicate bins with a lower median value relative to that of

excluded proteins, whereas blue points indicated bins with a higher relative median value.

Grey points indicate comparisons lacking statistical significance. Individual points are scaled

within each subplot to reflect the sample sizes of proteins contained within each bin.

(TIF)

S8 Fig. Associations between local compositional enrichment and protein half-life persist

in the absence of LCD-containing proteins. For each amino acid, protein half-life values cor-

responding to proteins partitioned into a given window size and percent composition bin

were compared to values for all proteins of length� the corresponding window size that were

excluded from the bin. Red and blue points indicate bins for which the distribution of protein

half-life values differ significantly (Bonferroni-corrected p� 0.05) from those of excluded pro-

teins: red points indicate bins with a lower median value relative to that of excluded proteins,

whereas blue points indicated bins with a higher relative median value. Grey points indicate

comparisons lacking statistical significance. Individual points are scaled within each subplot to

reflect the sample sizes of proteins contained within each bin.

(TIF)

S9 Fig. Associations between local compositional enrichment and nTE persist in the

absence of proteins with homopolymeric repeats. For each amino acid, nTE values corre-

sponding to proteins partitioned into a given window size and percent composition bin were

compared to values for all proteins of length� the corresponding window size that were

excluded from the bin. Red and blue points indicate bins for which the distribution of protein

half-life values differ significantly (Bonferroni-corrected p� 0.05) from those of excluded
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proteins: red points indicate bins with a lower median value relative to that of excluded pro-

teins, whereas blue points indicated bins with a higher relative median value. Grey points indi-

cate comparisons lacking statistical significance. Individual points are scaled within each

subplot to reflect the sample sizes of proteins contained within each bin.

(TIF)

S10 Fig. Associations between local compositional enrichment and protein abundance per-

sist in the absence of proteins with homopolymeric repeats. For each amino acid, protein

abundance values corresponding to proteins partitioned into a given window size and percent

composition bin were compared to values for all proteins of length� the corresponding win-

dow size that were excluded from the bin. Red and blue points indicate bins for which the dis-

tribution of protein half-life values differ significantly (Bonferroni-corrected p� 0.05) from

those of excluded proteins: red points indicate bins with a lower median value relative to that

of excluded proteins, whereas blue points indicated bins with a higher relative median value.

Grey points indicate comparisons lacking statistical significance. Individual points are scaled

within each subplot to reflect the sample sizes of proteins contained within each bin.

(TIF)

S11 Fig. Associations between local compositional enrichment and protein half-life persist

in the absence of proteins with homopolymeric repeats. For each amino acid, protein half-

life values corresponding to proteins partitioned into a given window size and percent compo-

sition bin were compared to values for all proteins of length� the corresponding window size

that were excluded from the bin. Red and blue points indicate bins for which the distribution

of protein half-life values differ significantly (Bonferroni-corrected p� 0.05) from those of

excluded proteins: red points indicate bins with a lower median value relative to that of

excluded proteins, whereas blue points indicated bins with a higher relative median value.

Grey points indicate comparisons lacking statistical significance. Individual points are scaled

within each subplot to reflect the sample sizes of proteins contained within each bin.

(TIF)

S12 Fig. Individual amino acid composition profiles for subcellular compartments pre-

dominantly associated with enrichment for polar and charged residues. Composition

ranges for each amino acid significantly associated with the cytoplasm (A) and nucleus (B) are

indicated. All plotted points indicate protein sets for which association with the indicated sub-

cellular compartment is statistically significant (Bonferonni-corrected p< 0.05). Plots are

shown only for amino acids with at least two composition bins significantly associated with

the indicated subcellular compartment.

(TIF)

S13 Fig. Individual amino acid composition profiles for subcellular compartments pre-

dominantly associated with enrichment for hydrophobic and aromatic residues. Composi-

tion ranges for each amino acid significantly associated with the endoplasmic reticulum (A),

Golgi apparatus (B), vacuole (C), and mitochondria (D) are indicated. All plotted points indi-

cate protein sets for which association with the indicated subcellular compartment is statisti-

cally significant (Bonferonni-corrected p< 0.05). Plots are shown only for amino acids with at

least two composition bins significantly associated with the indicated subcellular compart-

ment.

(TIF)

S14 Fig. Individual amino acid composition profiles for subcellular compartments pre-

dominantly associated with enrichment for both polar and hydrophobic/aromatic

Residue-dependent effects of amino acid composition on protein biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006256 September 24, 2018 28 / 33

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006256.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006256.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006256.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006256.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006256.s017
https://doi.org/10.1371/journal.pcbi.1006256


residues. Composition ranges for each amino acid significantly associated with the plasma

membrane (A) and cell wall (B) are indicated. All plotted points indicate protein sets for which

association with the indicated subcellular compartment is statistically significant (Bonferonni-

corrected p< 0.05). Plots are shown only for amino acids with at least two composition bins

significantly associated with the indicated subcellular compartment.

(TIF)
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