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Prions are important disease agents and epigenetic regulatory ele-
ments. Prion formation involves the structural conversion of pro-
teins from a soluble form into an insoluble amyloid form. In many
cases, this structural conversion is driven by a glutamine/asparagine
(Q/N)-rich prion-forming domain. However, our understanding of
the sequence requirements for prion formation and propagation by
Q/N-rich domains has been insufficient for accurate prion propen-
sity prediction or prion domain design. By focusing exclusively on
amino acid composition, we have developed a prion aggregation
prediction algorithm (PAPA), specifically designed to predict prion
propensity of Q/N-rich proteins. Here, we show not only that this
algorithm is far more effective than traditional amyloid prediction
algorithms at predicting prion propensity of Q/N-rich proteins, but
remarkably, also that PAPA is capable of rationally designing pro-
tein domains that function as prions in vivo.
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Prions result from proteins that are capable of converting from
a soluble, often intrinsically disordered native state into an

infectious aggregated amyloid form. Amyloid fibrils are β-sheet–
rich protein aggregates associated with numerous human diseases,
including Alzheimer’s disease and type II diabetes. Amyloid fibrils
can also serve beneficial functions, acting as structural scaffolds or
protein-only elements of inheritance (1). Therefore, amyloid-
based prions could potentially be used for synthetic biology appli
cations, allowing for the construction of posttranslational epige-
netic regulatory elements. However, because developing methods
to design stable protein folds has been a long-standing challenge,
designing proteins capable of adopting two distinct stable states
would seem to provide a near-impossible challenge.
Seven amyloid-based prions have been identified in yeast (2). In

each case, an intrinsically disordered glutamine/asparagine (Q/N)-
rich prion-forming domain (PFD) drives prion formation. Q/N-
rich amyloid-like aggregates have been proposed to be involved in
various diseases (3, 4), as well as to act as structural (5) and reg-
ulatory elements (1). The genetic tractability of yeast makes the
yeast prions a powerful model system to explore the sequence
requirements for amyloid formation by Q/N-rich domains and to
test de novo designed PFDs.
Scrambling studies indicate that prion formation by Q/N-rich

proteins is driven largely by amino acid composition, with only
modest effects of primary sequence (6, 7). Therefore, we recently
developed an in vivo method to score the prion propensity of each
amino acid in the context of a Q/N-rich PFD. Combining these ex-
perimentally determined values with the disorder prediction algo-
rithm FoldIndex (8), we developed an entirely composition-based
prion prediction algorithm (9), which we now call the prion aggre-
gation prediction algorithm (PAPA). We tested PAPA on a dataset
generated by Alberti et al. (10), in which they identified the 100
proteins with greatest compositional similarity to known yeast prions
and scoredeachdomain forprion-likeactivity in fourdifferent assays.
There was a strong correlation between their observed aggregation
activity andprionpropensity predictedbyPAPA(9).This correlation
was a unique demonstration of an algorithm that could effectively
distinguish Q/N-rich proteins with and without prion activity.
Numerous other aggregation prediction algorithms have also

been developed, including TANGO (11), Zyggregator (12), Zip-
perDB (13), andWaltz (14). However, none of these has yet shown
the ability to distinguish between Q/N-rich proteins with and
without prion activity (15). There are a few possible explanations
for this failure. First, it is possible that some of these algorithms

might be effective for Q/N-rich domains, but just have not been
thoroughly tested. For example, the ability of Waltz to identify
predicted amyloid-prone hexapeptides within the PFD of the yeast
prion protein Sup35 was used to argue for the utility of Waltz (14);
however, this ability does not address whether the presence of
these hexapeptides is predictive of a domain’s amyloid propensity,
as the control of examining whether such sequences are also found
in non-amyloid–forming Q/N-rich sequences has not been repor-
ted. Second, some of these algorithms broadly predict aggregation
propensity, but do not specifically predict amyloid formation pro-
pensity (14). Finally, our previous work (9) suggested that there
may be two distinct classes of amyloid-forming proteins: those for
which amyloid formation is driven by short, highly amyloidogenic,
often hydrophobic, stretches (16) and those for which amyloid
formation is driven by many weaker interactions across a large,
intrinsically disordered domain (9). We hypothesized that whereas
most prediction algorithms are designed for proteins in the first
class, the Q/N-rich yeast PFDs fall into the second class (9). Con-
sistent with the idea that there are two classes of amyloid proteins,
PAPA accurately predicts prion propensity of Q/N-rich proteins,
but does not accurately predict non-Q/N–rich prion proteins like
Het-s and PrP (9). Here, we distinguish among these explanations
by testing the ability of various algorithms to predict amyloid and
prion formation by Q/N-rich proteins. We find that none of these
other algorithms is as effective as PAPA at distinguishing between
Q/N-rich domains with and without prion activity.
We then asked whether PAPA would be sufficient for de novo

PFD design. Because the 100 proteins tested by Alberti et al. were
all selected for their compositional similarity to known prions, they
represent a relatively homogeneous pool. Therefore, the extent to
which PAPA’s predictive abilities would be limited to highly pre-
selected proteins was unclear. Here, we have adapted PAPA for the
more challenging task of de novo design of synthetic PFDs (sPFDs).
Characterization of two sPFDs designed by this method reveals
that these domains function in vivo similarly to naturally occurring
PFDs. These results demonstrate the substantial progress that we
have made in defining the sequence basis for prion formation.

Results
Predicting Aggregation Propensity of Q/N-Rich Proteins. Various
strategies have been proposed for predicting aggregation pro-
pensity. We used the dataset of Alberti et al. (10) to test which of
these strategies were effective for Q/N-rich proteins. Of the 100
Q/N-rich proteins tested by Alberti el al., 18 showed prion-like
activity in all four assays, whereas 18 did not show prion-like
activity in any assay. This result provides a useful dataset, with
clear examples of non-prion–like and prion-like sequences. Im-
portantly, the four assays include tests of both amyloid- and
prion-forming ability; therefore, domains that fail all four tests
not only fail to act as prions, but also show no detectable
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amyloid-forming ability. Using PAPA, prion sequences show
significantly higher average predicted prion propensity (P = 2 ×
10−8 by ANOVA) and clear separation is seen between the prion
and nonprion sets; our previously defined cutoff score of 0.05
allowed for prediction of the prion and nonprion proteins with
>90% accuracy (ref. 9 and Fig. 1A). No other algorithm could
match this prediction accuracy (Fig. 1 and Table S1).
ZipperDB uses a structure-based approach for amyloid pre-

diction.Nelson et al. demonstrated that the short peptideNNQQNY
fromSup35 could form both amyloid-like fibrils andmicrocrystals,
allowing for high-resolution structural determination (17). Zip-
perDB scores amyloid propensity by threading each six-residue
peptide through this structure and evaluating structural compat-
ibility using RosettaDesign (13, 18). On the basis of experimental
evidence, an energy threshold of −23 kcal/mol was determined;
insertion of a single amyloidogenic hexapeptide into RNase Awas
sufficient to drive amyloid formation (13). Therefore, we iden-
tified the lowest energy segment in each of the prion and nonprion

peptides. Again, there was a statistically significant difference
between the prion and nonprion sets (P = 0.02 by ANOVA), but
this was not sufficient to distinguish between the two sets (Fig. 1B).
All proteins in both sets had segments withRosetta energies below
−23 kcal/mol, demonstrating that such segments are not sufficient
for prion formation within Q/N-rich domains. Furthermore,
whereas amyloid-prone segments in natively folded proteins
might be prevented from aggregating due to the stability of the
native fold (13), because of the high Q/N-content of these
domains, each is predicted to be almost entirely disordered; thus,
these high-scoring segments should be largely accessible for am-
yloid formation. All domains in the prion set had energies below
−25 kcal/mol, suggesting that very low Rosetta energies may be
necessary in the context of Q/N-rich domains. However, such
segments are also found in the majority of nonprion domains.
Other methods of analysis, such as counting the number of seg-
ments below −23 or −25 kcal/mol for each protein, failed to yield
better separation (Fig. S1 A–C).

Fig. 1. Predicting prion propensity of Q/
N-rich proteins. Box and whiskers plots
show predicted aggregation propensity,
as scored by various algorithms, of theQ/N-
rich proteins tested by Alberti et al. (10)
that showed prion-like activity either in all
four assays (prion) or in none of the assays
(nonprion). When applicable, previously
described cutoffs are indicated by a dashed
line. (A) Predicted prion propensities for
the prion and nonprion set, as scored by
PAPA. (B) Free energy of the lowest-scor-
ing region of each protein, as predicted by
ZipperDB. (C) Number of residues in pre-
dicted amyloid stretches for each protein,
as scored by Waltz using the “best perfor-
mance” setting. (D) Aggregation propen-
sities, as predicted by the “optimal score”
calculation using Zyggregator. (E) Lowest-
scoring (most amyloid-prone) segment of
each protein, as predicted by PASTA. (F)
Minimum per-residue score, as predicted
by Paircoil2. Lower scores indicate greater
coiled-coil propensity.
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Waltz identifies amyloid-prone hexapeptide segments on the
basis of a scoring matrix. Using the “best overall performance”
setting, Waltz identified amyloid-prone segments in 89% of the
prion-like proteins and half of the nonprion proteins (Fig. 1C),
clearly indicating that the presence of such segments is not suf-
ficient for amyloid formation. Although on average there were
more residues predicted to be in amyloid-forming segments
among the prion proteins, no clear separation was seen between
the two sets. Using the “high specificity” setting (which reduces
false positives) did not significantly improve the results; 22% of
the nonprions still scored positive, whereas only 55% of the
prion-like proteins scored positive (Fig. S1D). Indeed, 4 of the 14
highest-scoring segments were in nonprion domains.
Other algorithms focus on the overall physical properties of

peptide segments rather than specific primary sequence features.
Chiti et al. demonstrated that a protein’s aggregation propensity
could be predicted largely on the basis of its physico-chemical
properties, such as hydrophobicity and charge (19). TANGO and
Zyggregator use such properties to predict aggregation propensity
(11, 12). Linding et al. previously reported that TANGO does not
identify β-aggregation nuclei in the PFDs of the yeast prion pro-
teins Sup35 and Ure2 (20). It likewise fails to detect β-aggregation
nuclei in the PFDs of the Cyc8, Mot3, and Rnq1 prion proteins
so is clearly not suited for prediction of Q/N-rich proteins. By
contrast, for Zyggregator, there was a significant difference be-
tween average “optimal scores” for prion and nonprion sequences
(P = 2 × 10−5 by ANOVA); however, there was substantial
overlap between the prion and nonprion sets (Fig. 1D).
Rather than just focusing on the β-sheet propensity of individual

stretches, PASTA (Prediction of Amyloid Structure Aggregation)
incorporates pairwise interactions between neighboring β-strands
(21). Trovato et al. previously reported that a PASTA energy
prediction of < −4.0 was indicative of cross-β fibrillar aggregates
(21). Such segments were found in 50% of prion-like proteins vs.
only 22% of the nonprion proteins (Fig. 1E), and the PASTA
score for the segment predicted to be most amyloid prone in each
protein was much lower on average in the prion set than in the
nonprion set (−4.64 vs. −2.92; P = 0.004 by ANOVA). However,
a low PASTA score was not necessary for amyloid formation; for
example, themost amyloid-prone segment identified by PASTA in
Rnq1 had a PASTA score of −2.40, well above the threshold
predicted to form amyloid.
Finally, a recent study suggested that coiled coils play a key role

in amyloid formation and that sequences capable of forming coiled
coils are overrepresented among amyloid-forming sequences (22);
however, this study did not include analysis of compositionally
similar nonamyloid domains to assess whether this overrepresen-
tation was simply due to compositional biases. In fact, there was no
difference in the frequency of predicted coiled coils between the
prion and nonprion set using Paircoil2 (ref. 23 and Fig. 1F). Using
Coils (24), such sequences were actually slightly less common
among prion-like domains (Fig. S1 E–G). Indeed, in both sets,
most sequences did not have any regions predicted to form coiled
coils by either prediction method. Thus, although it remains pos-
sible that formation of coiled coils is involved in prion formation
for specific proteins, there is no evidence of a correlation between
predicted coiled coils and prion propensity.

Correlations Between Algorithms. PAPA uses a large window size
and is entirely composition based, whereas Waltz and ZipperDB
look for small primary sequence motifs. Given the substantial
differences in the basis for these algorithms, it was surprising that
each showed statistically significant differences between the prion
and nonprion sets. We therefore hypothesized that prion pro-
pensity of Q/N-rich proteins might be driven by a combination of
global composition and local primary sequence; if so, combining
multiple algorithms might improve predictive accuracy. However,
pairing PAPA with each of the other algorithms had little effect
on predictive accuracy (Fig. S2 and Table S2). For each pair of
algorithms, we performed an unbiased analysis to determine the
linear function that allowed for optimal separation of prion and
nonprion sequences; when PAPA was paired with each of the
other algorithms, optimal predictive accuracy was achieved when

little or no weight was given to the other algorithm (Table S2).
Furthermore, no other pair of algorithms could match the pre-
dictive accuracy of PAPA alone (Table S2).
Instead, we found strong correlations between many of the

pairs of algorithms (Fig. S2). Some of these correlations were not
surprising. For example, both PAPA and Zyggregator give high
scores to hydrophobic residues and low scores to charged resi-
dues. Consequently, there is a strong correlation (P < 10−6 by
Spearman’s rank analysis) between PAPA and Zyggregator
scores (Fig. S2B). Modest correlations were seen for many of the
other pairs of algorithms (Fig. S2B).
Surprisingly, although ZipperDB and Waltz look for specific

small primary sequence motifs whereas PAPA assesses only
composition, there was also a statistically significant correlation
between the scores with PAPA and those of both ZipperDB (P =
0.01) and Waltz (P = 0.004). We hypothesized that these corre-
lations are due to the position-independent aspects of each algo-
rithm. For example, many of the residues that score high (I, V, W,
F) or low (K, R, D, P) in PAPA are generally similarly favored/
disfavored by Waltz (14); the difference is that Waltz adds posi-
tion-specific effects. We hypothesized that Waltz gives higher
scores on average to prion sequences than nonprion sequences
simply because of compositional differences between the two sets
and that the position-specific aspects ofWaltz do nothing to add to
its predictive accuracy for Q/N-rich proteins. To test this, we
scrambled each of the prion and nonprion sequences in silico and
reanalyzed the scrambled sequences with Waltz. No significant
changewas seen in the number ofWaltz-positive amyloid stretches
in either the prion or the nonprion set after scrambling (Fig. 2A).
In other words, making Waltz blind to the original primary se-
quence of a domain does nothing to reduce prediction accuracy.
This result argues that the higherWaltz scores seen in the prion set
reflect compositional differences between the sets and not that the

Fig. 2. Waltz and ZipperDB predictions of scrambled prion and nonprion
domains. Each of the prion and nonprion domains analyzed in Fig. 1 was
scrambled in silico such that the primary sequence was randomized while
maintaining composition. This process was then repeated to generate
a second set of scrambled constructs. Shown are box and whiskers plots of
the range of Waltz (A) and ZipperDB (B) predictions for the wild-type prion
and nonprion domains before scrambling (WT) and for the first (Scr1) and
second (Scr2) sets of scrambled sequences.
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residues are preferentially arranged in specific sequence patterns
in the prion set.
Interestingly, although scrambling did not significantly change

the average ZipperDB scores in the prion and nonprion sets, it
did change the distribution of scores (Fig. 2B). For each of the
prion sequences before scrambling, ZipperDB predicted the
most amyloid-prone segment to have a free energy between −25
and −27 kcal/mol. After scrambling, the range was much larger
(−23.5 to −28.5), modestly reducing the separation between
prion and nonprion sequences. This result suggests that there
may be selection among the prion-forming sequences for primary
sequences that confer a specific range of Rosetta energies.

Prion Domain Design. On the basis of the high prediction ability
of PAPA, we tested whether it would be sufficient for de novo PFD
design. We started with the yeast translation termination factor
Sup35, which forms the [PSI+] prion (25). Sup35 contains three
domains: an N-terminal glutamine/asparagine (Q/N)-rich prion-
forming domain (amino acids 1–114) that is responsible for [PSI+]
formation and propagation, a C-terminal domain that is respon-
sible for Sup35’s translation termination function, and a highly
charged middle domain (26). PFDs from other prion proteins can
substitute for the Sup35 PFD in supporting [PSI+] formation and
propagation (27, 28). This ability to swap PFDs in a modular way
provides a useful system for testing de novo designed PFDs.
We developed a simple computer algorithm to design sPFDs.

Briefly, we simulated a small synthetic proteome (or “syntheome”)
by having a computer algorithm randomly select 105 aa. Every amino
acid except cysteine was represented in this syntheome; to increase
the likelihood of identifying PFDs, the composition was biased to-
ward residues that balance prion propensity and disorder propensity.
We used PAPA to scan this syntheome to identify 112-aa segments
that (i) were predicted to be entirely disordered, (ii) had identical Q/
N content to the Sup35 PFD (52 Q/Ns in residues 3–114), and (iii)
had high predicted prion propensity. We identified two segments
that fit these criteria (Fig. 3; see Fig. S3 for prion propensity maps):
sPFD-1 and sPFD-2. As negative controls, we selected three 112-aa
segments (cPFD-1, -2, and -3) that fit the first two criteria, but that
were predicted to have low prion propensity (Fig. 3 and Fig. S3).

sPFDs Form Stable, Curable Prions. To test each domain for its prion-
forming ability, we took advantage of the fact that [PSI+] increases
read-through of stop codons, allowing for [PSI+] detection by
monitoring nonsense suppression of the ade2-1 allele (29). In [psi−]
(nonprion) cells, ade2-1mutants are unable to grow in the absence
of adenine and turn red in the presence of limiting adenine; by
contrast, [PSI+] cells can grow in the absence of adenine and are
white on limiting adenine (29). Each sPFD and cPFD was inserted
into Sup35 in place of the Sup35 PFD (residues 3–114). When
expressed as the sole copy of Sup35, each protein efficiently

complemented a sup35 deletion (Fig. 4A). When these cells were
grown in the absence of adenine, formation of Ade+ colonies was
rare (Fig. 4B). Such rare Ade+ colonies could result from either
DNA mutation or [PSI+] formation. To distinguish between these
possibilities, we tested the effect of PFD overexpression. The fre-
quency of the Sup35 misfolding events that initiate [PSI+] forma-
tion is dependent on Sup35 concentration, whereas the frequency
of chromosomal mutations is insensitive to Sup35 expression levels
(25). Overexpression of thematching sPFD increasedAde+ colony
formation (Fig. 4B), suggesting that the Ade+ phenotype was
a result of a prion. Almost no Ade+ colonies, and no increase upon
overexpression, were seen for the cPFDs (Fig. 4B). To confirm that
expression of the cPFDs had not caused loss of [PIN+], a prion
required for efficient [PSI+] formation (30), a plasmid expressing
wild-type Sup35 was reintroduced into each strain; after loss of the
cPFD-expressing plasmid, cells were assayed for [PSI+] formation.
In all cases, the strains maintained the ability to form [PSI+],
demonstrating that they were still [PIN+] (Fig. S4).
The Ade+ phenotype was further tested for curability, domi-

nance, and transmissibility. Low concentrations of guanidine HCl
cure yeast prions by inhibiting the chaperoneHsp104 (31, 32). For
both sPFDs, we identified Ade+ colonies that stably maintained
the Ade+ phenotype in the absence of guanidine and lost the
Ade+ phenotype after growth on medium containing guanidine
(Fig. 4C and Table 1).When these curable Ade+ cells were mated
with [psi−] cells expressing the identical version of Sup35, the
Ade+ phenotype was generally dominant; however, when mated
with [psi−] cells expressing wild-type Sup35, the Ade+ phenotype
was always recessive (Table 1). Furthermore, the Ade+ pheno-
type was efficiently transferred by cytoduction into cells express-
ing the matching version of Sup35 (Table 1); cytoduction is a
method that transfers cytoplasmic elements, but not nuclear

Fig. 3. Sequences of sPFDs and cPFDs.

Fig. 4. Prion formation by sPFDs. (A) [psi−] strains expressingwild-type Sup35 or
Sup35 in which the PFDwas replacedwith a sPFD or cPFDwere streaked on YPD.
(B) Induction assays for sPFDs and cPFDs. Yeast strains expressing a version of
SUP35 inwhich the Sup35 PFDwas replacedwith the indicated sPFDor cPFDwere
transformed with either an empty vector (−) or with this vector modified to ex-
press the respective PFD from theGAL1 promoter (+). Cells were grown for 3 d in
galactose/raffinose medium and serial dilutions were plated onto medium lack-
ing adenine to select for [PSI+]. (C) Curability of the sPFD’s Ade+ phenotype. In-
dividual Ade+ isolates were grown on YPD (−) and YPD plus 4mMguanidine HCl
(+). Cells were then restreaked onto YPD to test for loss of the Ade+ phenotype.
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genes (33). Collectively, these results demonstrate that the Ade+
phenotype is the result of a prion. By contrast, although extended
incubation (10–12 d) of the cPFD inductions yielded rare Ade+
colonies, none were dominant or transmissible by cytoduction.

Discussion
Numerous algorithms have been developed to predict aggregation
propensity. However, despite the importance of Q/N-rich domains
both in disease and as regulatory elements, none of these algo-
rithms has rigorously been validated on Q/N-rich proteins. We
previously proposed that Q/N-rich amyloid proteins may represent
a unique class of amyloid-forming proteins (9, 15). Specifically,
although extensive evidence points to the importance of short,
highly amyloidogenic stretches in driving amyloid formation by
non-Q/N–rich proteins (13, 14, 16), we proposed that amyloid
formation by Q/N-rich domains is driven by more diffuse sequence
features, spread out over large, intrinsically disordered domains (9,
15). Our current data strongly support this hypothesis. First, PAPA,
which scans proteins using a large window size and ignores primary
sequence, is more effective at predicting amyloid/prion activity of
Q/N-rich proteins than algorithms that focus on smaller sequence
windows and that incorporate primary sequence requirements.
Second, we show that PAPA is sufficient for PFD design.
Some evidence suggests that short stretches within Sup35 may

act as important nucleation sites or interfaces within growing fibers
(34, 35). However, this idea is compatible with the observation that
prion formation is driven largely by amino acid composition. Sup35
has only a small number of both highly amyloid-prone and amyloid-
inhibiting amino acids (9), and these residues are unevenly dis-
tributed; thus, their relative positioning naturally creates pockets
of high amyloid propensity that could act as nucleating sites,
explaining the apparent contradiction between the proposed im-
portance of short stretches in nucleating [PSI+] formation and the
relative insensitivity of Sup35 to scrambling. This insensitivity to
scrambling, combined with the ability to design and predict prion
propensity solely on the basis of composition, argues that any short
nucleating sites are simply created by clustering of amyloid-prone
residues and that any primary sequence requirements are so broad
as to have almost no predictive value.
The sPFDs further suggest that the amyloid stretches pre-

dicted by Waltz and ZipperDB are not predictive of prion pro-
pensity. Among the sPFDs and cPFDs, all had predicted fiber-
forming segments by ZipperDB (defined as a Rosetta energy
below −23 kcal/mol), and all but cPFD-3 had Waltz-positive
segments (Table S3). Indeed, Zyggregator was the only other
algorithm to effectively distinguish between the cPFDs and
sPFDs (Table S3). In short, algorithms that focus largely on
composition (PAPA and Zyggregator) show far more predictive
accuracy for Q/N-rich domains than those that focus on primary
sequence, further supporting the idea that whereas primary se-
quence exerts subtle effects on prion formation, prion propensity
is largely determined by composition.
Our ability to rationally design synthetic PFDs marks a critical

milestone in our understanding of these unique protein moieties.
Although other laboratories have assembled artificial PFDs by

modifying or combining primary sequence or compositional
elements from other amyloid or prion proteins (6, 7, 36–38) or by
modifying naturally occurring proteins (39), these experiments
are unique in that they involve de novo designed PFDs. The
ability to design sPFDs may facilitate the design of systems that
posttranslationally control enzyme activity in a cell. Further-
more, because our PFDs were designed solely on the basis of
three criteria—Q/N content, predicted prion propensity, and
FoldIndex order propensity—it should be possible to design
PFDs with a wide range of compositions, aiding in potential
biotechnology applications of PFDs (40).
Excluding Q/N residues, the sPFDs are only 58% and 45%

compositionally similar to the Sup35 PFD (Table S4). Gluta-
mate, histidine, isoleucine, threonine, and tryptophan, although
all absent from the Sup35 PFD, are all present in one or both of
the sPFDs, demonstrating the flexible compositional require-
ments for prion formation and propagation. Furthermore, the
cPFDs have a similar degree of compositional similarity to
Sup35, with 45%, 40%, and 44% similarity, respectively, ex-
cluding Q/N residues, confirming that compositional similarity to
known prions is a poor predictor of prion propensity (2, 9).
It is striking that the sPFDs not only form prions, but also can

stably propagate these prions over many generations. We have
previously identified Sup35 mutants that are able to form Ade+
colonies, but are unable to stably maintain the Ade+ phenotype
without selection (7). The Sup35 PFD is composed of two sub-
domains: Amino acids 1–40 seem to drive amyloid nucleation and
the ability to add to preexisting prion aggregates, whereas amino
acids 41–114 are largely dispensable for these activities, but are
required for prions to be propagated overmultiple generations (36).
These two regions have different compositional requirements, ar-
guing that the ability to add to preexisting aggregates and the ability
to propagate aggregates are driven by different compositional fea-
tures (36, 41). The fact that we did not include separate criteria for
each activity, yet the sPFDs had full prion activity, suggests that the
compositional requirements for these two activities are quite broad.
Finally, it will be interesting in future experiments to dissect

how each of our three design criteria separately affects prion
propensity. For example, here we focused specifically on Q/N-rich
proteins, because PAPA is uniquely well suited for this class of
proteins. However, it remains possible that there may be a subset
of non-Q/N–rich amyloid proteins that behave like Q/N-rich
proteins (with amyloid formation driven by large disordered
stretches), potentially allowing for design of non-Q/N–rich PFDs.

Materials and Methods
Yeast Media. All experiments were performed at 30 °C. Standard yeast media
were as previously described (42), except that YPD contained 0.5% (wt/vol)
yeast extract instead of the standard 1%. Galactose/raffinose dropout me-
dium contained 2% (wt/vol) galactose and 1% (wt/vol) raffinose.

PAPA Algorithm. PAPA uses the prediction method described in Toombs et al.
(2010). A detailed description of this method and instructions for using PAPA
can be found in SI Materials and Methods. A Python script for running PAPA
can be found at http://combi.cs.colostate.edu/supplements/papa/.

Table 1. Curability, dominance, and transmission of the Ade+ phenotype

Curing* Dominance† Cytoduction‡

With matching PFD With wild-type PFD Isolate 1 Isolate 2
sPFD-1 16/20 14/16 0/16 11/12 12/12
sPFD-2 9/20 6/9 0/9 10/12 7/12

*For each sPFD, 20 Ade+ isolates were tested for curing. Numbers indicate the fraction of Ade+ isolates that
maintained the Ade+ phenotype when grown in the absence of guanidine HCl, but lost the Ade+ phenotype
when grown in the presence of guanidine HCl.
†All curable Ade+ colonies were mated with [psi−] cells expressing either the identical version of Sup35 or wild-
type Sup35. Numbers indicate the fraction of isolates in which the Ade+ phenotype was dominant. Because
dominance testing requires multiple handling steps, this assay both tests dominance and acts as a more stringent
test of prion stability.
‡Two independent Ade+ isolates were used as cytoduction donors into cells expressing the same version of
Sup35. Numbers indicate the fraction of recipient cells that were Ade+.
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sPFD and cPFD Design and Construction. An Excel spreadsheet was used to
simulate a synthetic proteome by randomly selecting 100,000 aa. To facilitate
identification of disordered Q/N-rich domains with high predicted prion
propensity, the proteome was biased in favor of Q/N residues and in favor of
other residues that balance disorder and prion propensity. At each position in
the proteome, each amino acid had the following probability of being se-
lected: 23% Gln; 23% Asn; 8% Ser; 6% Gly; 6% Thr; 4% each of Ala, His, and
Tyr; and 2%each of Asp, Glu, Phe, Leu, Ile, Lys,Met, Pro, Arg, Val, and Trp. The
only amino acid excluded was Cys, to preclude the possibility of disulfide
bonds. The random number feature in Excel was used to select each amino
acid (for example, a random number between 0 and 0.04 indicated Ala, 0.04–
0.06 indicated Asp, etc.).

This “proteome” was then scanned using PAPA (9). PAPA effectively uses
an 81-aa window, but weights each amino acid in inverse proportion to its
distance from the center of the window (see SI Materials and Methods for
details). The predicted prion propensities of all 81-aa windows across the
proteome were calculated. Potential 112-aa sPFDs and cPFDs were then
identified as the highest- and lowest-scoring 81-aa windows, plus the 31 aa
that followed thewindow in the proteome. Only domains with exactly 52 Q/N
residues (the same number as in amino acids 3–114 of Sup35) were considered
for further testing. Domains containing anywindows predicted to be ordered
by FoldIndex (8), using a 41-aa window size, were excluded from testing.

The two highest-scoring and three lowest-scoring domains were then built
as synthetic geneswith yeast optimized codons, using amodifiedversionof the
previously described method (7). Briefly, eight overlapping oligonucleotides
were used to code for each domain (see Table S5 for oligonucleotide
sequences). These oligonucleotides were combined and amplified by PCR. PCR
products were cotransformed with BamHI/HindIII-cut pJ526 (a LEU2 cen plas-
mid; from Dan Masison, National Institutes of Health, Bethesda) into strain
780-1D (MATα kar1-1 SUQ5 ade2-1 his3 leu2 trp1 ura3 sup35; from Dan

Masison) (43) carrying the SUP35 maintainer plasmid pJ533 (URA3) (43).
Transformations were selected on SC−Leu and then transferred to 5-fluo-
roorotic acid plates to select for loss of pJ533. Plasmidswere then confirmed by
DNA sequencing.

Building Induction Plasmids. The NM domain of each sPFD and cPFD was
amplified by PCR, using the antisense oligonucleotide EDR969 paired with
a primer unique to the specific sPFD or cPFD. EDR969 installs a stop codon and
PstI restriction site at the end of the middle (M) domain. PCR products were
digested with BamHI and PstI and inserted into BamHI/PstI-cut pKT24, a TRP1
2-μm plasmid containing the GAL1 promoter (7). Ligation products were
transformed into Escherichia coli and analyzed by DNA sequencing.

Dominance Testing and Cytoduction. To generate recipient strains for domi-
nance and cytoduction experiments, each sPFD and cPFD, alongwith thewild-
type PFD, was PCR amplified using primers EDR261 and EDR301. PCR products
were cotransformed with AatII/HindIII-cut pJ533 into YER282 (MATa kar1-1
SWQ5 ade2-1 his3 leu2 trp1 ura3 arg1::HIS3 sup35::KanMx pER186) (7),
selecting on SC−Ura. Transformants were then restreaked for single colonies
on SC−Ura and replica plated to identify cells that had lost pER186.

Totest fordominance, thesecellswereresuspendedinwaterwithAde+ isolates
from the induction experiments and spotted onto YPAD plates. After 48 h, the
YPAD plates were replica plated to SD + Ade + Trp to select for diploids. Diploids
were then replica plated onto SD + Trp and YPD to test for the Ade+ phenotype.
Cytoduction experiments were performed as previously described (7).
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